Computer Simulation of Filling Process and Temperature Distribution of Oil Pump Cover in Solidification Process

Oil pump cover, as a part of the oil pump, is generally formed by adopting aluminum die casting molding, and required for good internal and external quality. In order to improve the oil pump cover forming quality, the paper first simulates the thermal equilibrium of die-casting mold in the forming p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2013-09, Vol.423-426 (Applied Materials and Technologies for Modern Manufacturing), p.1894-1897
Hauptverfasser: Hu, Bo, Liu, Han Wu, Huang, Lian Dong, Fan, Shun Qin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Oil pump cover, as a part of the oil pump, is generally formed by adopting aluminum die casting molding, and required for good internal and external quality. In order to improve the oil pump cover forming quality, the paper first simulates the thermal equilibrium of die-casting mold in the forming process by finite element analysis, and obtains the temperature curves when mold works for 10 consecutive cycles, and determines that the thermal equilibrium temperature of die-casting mold is 260 °C. And then, based on the simulation results of filling and solidification in the forming process by ProCAST software, the shrinkage and cavity appear in the larger wall thickness of the casting. Meanwhile, by simulating the die-casting processes of the oil pump at different pouring temperatures, there are the least of shrinkage and cavity when the pouring temperature setting 640 °C. The results show that: it can take some methods to achieve the progressive solidification, and can reduce or eliminate the possible shrinkage and cavity, such as shortening the distance between sprue, runner and inner runner and die casting to reduce the casting heat loss, or adding cooling system to accelerate the cooling rate in the larger wall thickness of the casting. This analysis provides theoretical basis for the actual casting production of oil pump covers.
ISSN:1660-9336
1662-7482
1662-7482
DOI:10.4028/www.scientific.net/AMM.423-426.1894