Dehydration and Upgrading of Lignite with Microwave

For solving the problems of high energy consumption and high capacity of water-absorption, microwave dehydration technology of lignite was studied in this paper. A self-developed microwave system was used for the experiment on dehydration of lignite from eastern Inner Mongolia. It was proved that th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2013-09, Vol.423-426 (Applied Materials and Technologies for Modern Manufacturing), p.667-673
Hauptverfasser: Xin, Fan Wen, Yang, Wei, Xu, Zhi Qiang, Han, Xiang Yu, Geng, Peng Fei, Tu, Ya Nan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For solving the problems of high energy consumption and high capacity of water-absorption, microwave dehydration technology of lignite was studied in this paper. A self-developed microwave system was used for the experiment on dehydration of lignite from eastern Inner Mongolia. It was proved that the condition of moisture migration was improved and microwave dehydration had a unique mechanism. By analyzing the effects of microwave powers, coal particle sizes, and lignite qualities on drying characteristics, it was found that the moisture decreased when the microwave power increased. it was found that the higher the power was, the faster the moisture decreased; the smaller the particle size was, the faster the moisture decreased; the less the lignite was, the faster the moisture decreased. Through the scanning electron microscope analysis, it was concluded that microwave had no significant effect on the smooth particles, and the fibrous particles and clusters particles tended to be smooth under the effect of microwave. Therefore, the interface of lignite was relatively stable, and not easy to reabsorb water after microwave.
ISSN:1660-9336
1662-7482
1662-7482
DOI:10.4028/www.scientific.net/AMM.423-426.667