An Enhanced 3D Positioning Scheme Exploiting Adaptive Pulse Selection for Indoor LOS Environments

In this paper, an enhanced 3D positioning scheme exploiting adaptive pulse selection is proposed for indoor environments. The proposed scheme is based on the time-of-arrival and angle-of-arrival estimation with multiple orthogonal pulses and uniform linear arrays antenna in impulse radio ultra-wideb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wireless personal communications 2014-08, Vol.77 (4), p.2537-2548
Hauptverfasser: Kim, Youngok, Kim, Nammoon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, an enhanced 3D positioning scheme exploiting adaptive pulse selection is proposed for indoor environments. The proposed scheme is based on the time-of-arrival and angle-of-arrival estimation with multiple orthogonal pulses and uniform linear arrays antenna in impulse radio ultra-wideband systems. Since the ranging and the angle estimation performances are different from pulse shape and received SNR, the performance of 3D position estimation can be enhanced by adaptively selecting a pulse from received multiple pulses. Based on the orthogonal property, orthogonal pulses can be distinguished at the receiver and thus the optimal pulse is selected from the multiple pulses for ranging, azimuth and elevation angle estimation, respectively. Since the optimal pulse is selected for each estimation, enhanced performance for 3D position estimation can be achieved. The performance of the proposed scheme is evaluated by computer simulations over the IEEE 802.15.4a channel model. Results show that the performance of the proposed scheme is enhanced compared to that of the conventional scheme.
ISSN:0929-6212
1572-834X
DOI:10.1007/s11277-014-1653-y