Photodynamic therapy by in situ nonlinear photon conversion
In photodynamic therapy, light is absorbed by a therapy agent (photosensitizer) to generate reactive oxygen, which then locally kills diseased cells. Here, we report a new form of photodynamic therapy in which nonlinear optical interactions of near-infrared laser radiation with a biological medium i...
Gespeichert in:
Veröffentlicht in: | Nature photonics 2014-06, Vol.8 (6), p.455-461 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In photodynamic therapy, light is absorbed by a therapy agent (photosensitizer) to generate reactive oxygen, which then locally kills diseased cells. Here, we report a new form of photodynamic therapy in which nonlinear optical interactions of near-infrared laser radiation with a biological medium
in situ
produce light that falls within the absorption band of the photosensitizer. The use of near-infrared radiation, followed by upconversion to visible or ultraviolet light, provides deep tissue penetration, thus overcoming a major hurdle in treatment. By modelling and experiment, we demonstrate activation of a known photosensitizer, chlorin e6, by
in situ
nonlinear optical upconversion of near-infrared laser radiation using second-harmonic generation in collagen and four-wave mixing, including coherent anti-Stokes Raman scattering, produced by cellular biomolecules. The introduction of coherent anti-Stokes Raman scattering/four-wave mixing to photodynamic therapy
in vitro
increases the efficiency by a factor of two compared to two-photon photodynamic therapy alone, while second-harmonic generation provides a fivefold increase.
An investigation of the use of nonlinear upconversion effects like second-harmonic generation and four-wave mixing within biological tissue indicates that it should be possible to perform photodynamic therapy with near-infrared laser light at greater depths than previously. |
---|---|
ISSN: | 1749-4885 1749-4893 |
DOI: | 10.1038/nphoton.2014.90 |