Photodynamic therapy by in situ nonlinear photon conversion

In photodynamic therapy, light is absorbed by a therapy agent (photosensitizer) to generate reactive oxygen, which then locally kills diseased cells. Here, we report a new form of photodynamic therapy in which nonlinear optical interactions of near-infrared laser radiation with a biological medium i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature photonics 2014-06, Vol.8 (6), p.455-461
Hauptverfasser: Kachynski, A. V., Pliss, A., Kuzmin, A. N., Ohulchanskyy, T. Y., Baev, A., Qu, J., Prasad, P. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In photodynamic therapy, light is absorbed by a therapy agent (photosensitizer) to generate reactive oxygen, which then locally kills diseased cells. Here, we report a new form of photodynamic therapy in which nonlinear optical interactions of near-infrared laser radiation with a biological medium in situ produce light that falls within the absorption band of the photosensitizer. The use of near-infrared radiation, followed by upconversion to visible or ultraviolet light, provides deep tissue penetration, thus overcoming a major hurdle in treatment. By modelling and experiment, we demonstrate activation of a known photosensitizer, chlorin e6, by in situ nonlinear optical upconversion of near-infrared laser radiation using second-harmonic generation in collagen and four-wave mixing, including coherent anti-Stokes Raman scattering, produced by cellular biomolecules. The introduction of coherent anti-Stokes Raman scattering/four-wave mixing to photodynamic therapy in vitro increases the efficiency by a factor of two compared to two-photon photodynamic therapy alone, while second-harmonic generation provides a fivefold increase. An investigation of the use of nonlinear upconversion effects like second-harmonic generation and four-wave mixing within biological tissue indicates that it should be possible to perform photodynamic therapy with near-infrared laser light at greater depths than previously.
ISSN:1749-4885
1749-4893
DOI:10.1038/nphoton.2014.90