Photoreduction and Stabilization Capability of Molecular Weight Fractionated Natural Organic Matter in Transformation of Silver Ion to Metallic Nanoparticle
Photoinduced reduction of silver ion (Ag+) to silver nanoparticles (AgNPs) by dissolved organic matter (DOM) plays a crucial role in the transformation and transport of engineered AgNPs and Ag+ in aquatic environments. DOM is a mixture of natural polymers with wide molecular weight (MW) distribution...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2014-08, Vol.48 (16), p.9366-9373 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Photoinduced reduction of silver ion (Ag+) to silver nanoparticles (AgNPs) by dissolved organic matter (DOM) plays a crucial role in the transformation and transport of engineered AgNPs and Ag+ in aquatic environments. DOM is a mixture of natural polymers with wide molecular weight (MW) distribution, and the roles of specific components of DOM in the photoreduction of Ag+ to AgNPs are still not understood. In this study, MW fractionated natural organic matter (Mf-NOM) were investigated for their roles on the photoreduction process and stabilization of the formed AgNPs. This photoinduced reduction process depends highly on pH, concentration of Ag+ and NOM, light quality, and the MW of Mf-NOM. Monochromatic radiation and light attenuation correction suggested that the difference of Mf-NOM on reduction was mainly ascribed to the differential light attenuation of Mf-NOM rather than the “real” reductive ability. More importantly, compared with low MW fractions, the high MW Mf-NOMs exhibit drastically higher capability in stabilizing the photosynthesized AgNPs against Ca2+-induced aggregation. This finding is important for a better understanding of the differential roles of Mf-NOM in the transformation and transport of Ag+ and engineered AgNPs in DOM-rich surface water. |
---|---|
ISSN: | 0013-936X 1520-5851 |
DOI: | 10.1021/es502025e |