Do the same traffic rules apply? Directional chromosome segregation by SpoIIIE and FtsK

Summary Over a decade of studies have tackled the question of how FtsK/SpoIIIE translocases establish and maintain directional DNA translocation during chromosome segregation in bacteria. FtsK/SpoIIIE translocases move DNA in a highly processive, directional manner, where directionality is facilitat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular microbiology 2014-08, Vol.93 (4), p.599-608
Hauptverfasser: Besprozvannaya, Marina, Burton, Briana M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary Over a decade of studies have tackled the question of how FtsK/SpoIIIE translocases establish and maintain directional DNA translocation during chromosome segregation in bacteria. FtsK/SpoIIIE translocases move DNA in a highly processive, directional manner, where directionality is facilitated by sequences on the substrate DNA molecules that are being transported. In recent years, structural, biochemical, single‐molecule and high‐resolution microscopic studies have provided new insight into the mechanistic details of directional DNA segregation. Out of this body of work, a series of models have emerged and, ultimately, yielded two seemingly opposing models: the loading model and the target search model. We review these recent mechanistic insights into directional DNA movement and discuss the data that may serve to unite these suggested models, as well as propose future directions that may ultimately solve the debate.
ISSN:0950-382X
1365-2958
DOI:10.1111/mmi.12708