Down-regulating ERK1/2 and SMAD2/3 phosphorylation by physical barrier of celecoxib-loaded electrospun fibrous membranes prevents tendon adhesions
Abstract Peritendinous adhesions, as a major problem in hand surgery, may be due to the proliferation of fibroblasts and excessive collagen synthesis, in which ERK1/2 and SMAD2/3 plays crucial roles. In this study, we hypothesized that the complication progression could be inhibited by down-regulati...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2014-12, Vol.35 (37), p.9920-9929 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract Peritendinous adhesions, as a major problem in hand surgery, may be due to the proliferation of fibroblasts and excessive collagen synthesis, in which ERK1/2 and SMAD2/3 plays crucial roles. In this study, we hypothesized that the complication progression could be inhibited by down-regulating ERK1/2 and SMAD2/3 phosphorylation of exogenous fibroblasts with celecoxib. Celecoxib was incorporated in poly( l -lactic acid)-polyethylene glycol (PELA) diblock copolymer fibrous membranes via electrospinning. Results of an in vitro drug release study showed celecoxib-loaded membrane had excellent continuous drug release capability. It was found that celecoxib-loaded PELA membranes were not favorable for the rabbit fibroblast and tenocyte adhesion and proliferation. In a rabbit tendon repair model, we first identified ERK1/2 and SMAD2/3 phosphorylation as a critical driver of early adhesion formation progression. Celecoxib released from PELA membrane was found to down-regulate ERK1/2 and SMAD2/3 phosphorylation, leading to reduced collagen I and collagen Ⅲ expression, inflammation reaction, and fibroblast proliferation. Importantly, the celecoxib-loaded PELA membranes successfully prevented tissue adhesion compared with control treatment and unloaded membranes treatment. This approach offers a novel barrier strategy to block tendon adhesion through targeted down-regulating of ERK1/2 and SMAD2/3 phosphorylation directly within peritendinous adhesion tissue. |
---|---|
ISSN: | 0142-9612 1878-5905 |
DOI: | 10.1016/j.biomaterials.2014.08.028 |