Genetic diversity and population size in four rare southern Appalachian plant species

Allozyme diversity was examined in four rare, high-montane plant species from the Appalachian Mountains of southeastern North America. These species may represent relictual members or descendants of an alpine community that was more widespread during the late Pleistocene. We sampled five populations...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Conservation biology 1996-06, Vol.10 (3), p.796-805
Hauptverfasser: Godt, M.W. (University of Georgia, Athens, GA.), Johnson, B.R, Hamrick, J.L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Allozyme diversity was examined in four rare, high-montane plant species from the Appalachian Mountains of southeastern North America. These species may represent relictual members or descendants of an alpine community that was more widespread during the late Pleistocene. We sampled five populations of Geum radiatum (Rosaceae), Carex misera (Cyperaceae), Trichophorum cespitosum (Cyperaceae), and the four known populations of Calamagrostis cainii (Poaceae). Genetic diversity was low for all species but was typical of that found for plant species with limited ranges. Low genetic diversity may reflect historical events associated with changes in the species' biogeography. As the Pleistocene climate warmed, suitable habitat decreased in areal extent and became fragmented, probably resulting in smaller, more-isolated populations. In recent times these species, which co-occur in fragile rock outcrop habitats, have been adversely affected by human activities. Genetic analyses revealed reduced diversity in populations of decreasing size for three species. Estimates of gene flow were low (Nm < 1.0) in all four species. Positive associations between genetic diversity and population size, evidence of recent population declines, and the low estimates of gene flow suggest that genetic drift may play a prominent role in shaping the present-day genetic composition of these species. Furthermore, these data suggest that the genetically depauperate populations are unlikely to regain genetic variation without human intervention.
ISSN:0888-8892
1523-1739
DOI:10.1046/j.1523-1739.1996.10030796.x