C-reactive protein and Hypertension

C-reactive protein (CRP), the prototypical acute-phase reactant, is one of the most widely known biomarkers of cardiovascular disease. Circulating levels of CRP are clinically used to predict the occurrence of cardiovascular events and to aide in the selection of therapies based on more accurate ris...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of human hypertension 2014-07, Vol.28 (7), p.410-415
1. Verfasser: Hage, F G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:C-reactive protein (CRP), the prototypical acute-phase reactant, is one of the most widely known biomarkers of cardiovascular disease. Circulating levels of CRP are clinically used to predict the occurrence of cardiovascular events and to aide in the selection of therapies based on more accurate risk assessment in individuals who are at intermediate risk. This paper reviews the role of CRP in hypertension. In hypertensive individuals, CRP levels associate with vascular stiffness, atherosclerosis and the development of end-organ damage and cardiovascular events. Data suggest that some anti-hypertensive medications may lower CRP levels in a manner independent of their effect on blood pressure. In individuals who are normotensive at baseline, CRP levels have been shown in multiple cohorts to foretell the development of hypertension on follow-up. Whether genetic variability that influences circulating levels of CRP independent of environmental and behavioral factors can also be used in a similar manner to predict the change in blood pressure and development of hypertension is controversial. In addition to its role as a biomarker, experimental studies have unraveled an active direct participation of CRP in the development of endothelial dysfunction, vascular stiffness and elevated blood pressure. CRP has also been implicated as a mediator of vascular remodeling in response to injury and cardiac remodeling in response to pressure overload. Emerging data may reveal novel vascular inflammatory pathways and identify new targets for treatment of vascular pathology.
ISSN:0950-9240
1476-5527
DOI:10.1038/jhh.2013.111