Genetic and structural characterization of endA. A membrane-bound nuclease required for transformation of Streptococcus pneumoniae
The endA gene encoding the membrane nuclease of Streptococcus pneumoniae, which is necessary for DNA uptake in genetic transformation, was cloned in a streptococcal vector. This was accomplished by insertional mutagenesis of the gene, cloning of the mutant allele, and substitution of the wild-type a...
Gespeichert in:
Veröffentlicht in: | Journal of molecular biology 1990-06, Vol.213 (4), p.727-738 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The endA gene encoding the membrane nuclease of Streptococcus pneumoniae, which is necessary for DNA uptake in genetic transformation, was cloned in a streptococcal vector. This was accomplished by insertional mutagenesis of the gene, cloning of the mutant allele, and substitution of the wild-type allele by chromosomal facilitation of plasmid establishment. Plasmids carrying the endA+ gene complemented cells with endA- in the chromosome to restore DNAase activity and transformability. Determination of its DNA sequence showed the gene to encode a 30 kDa protein, EndA, with a typical signal sequence for membrane transport at its amino end. In vitro synthesis of EndA showed the initial translation product to be enzymatically active without further processing. Comparison with EndA found in cell membranes indicated that the enzyme retained its signal sequence, which apparently anchored the otherwise hydrophilic protein to the membrane. From the nucleotide sequence in the vicinity of endA and the effect of various insertions and deletions, it appears that endA is the last gene in an operon containing at least two other genes. Neither of these upstream genes, nor the downstream gene, are essential for either cell viability or transformability. |
---|---|
ISSN: | 0022-2836 |
DOI: | 10.1016/S0022-2836(05)80259-1 |