Ectopic expression of CaRLK1 enhances hypoxia tolerance with increasing alanine production in Nicotiana spp
In a previous report, the pepper receptor-like kinase 1 (CaRLK1) gene was shown to be responsible for negatively regulating plant cell death caused by pathogens via accumulation of superoxide anions. Here, we examined whether this gene also plays a role in regulating cell death under abiotic stress....
Gespeichert in:
Veröffentlicht in: | Plant molecular biology 2014-10, Vol.86 (3), p.255-270 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In a previous report, the pepper receptor-like kinase 1 (CaRLK1) gene was shown to be responsible for negatively regulating plant cell death caused by pathogens via accumulation of superoxide anions. Here, we examined whether this gene also plays a role in regulating cell death under abiotic stress. The total concentrations of free amino acids in CaRLK1-overexpressed cells (RLKox) increased by twofold compared with those of the wild-type Nicotiana tabacum BY-2 cells. Additionally, alanine and pyruvate concentrations increased by approximately threefold. These accumulations were associated with both the expression levels of the isocitrate lyase (ICL) and malate synthase genes and their specific activities, which were preferentially up-regulated in the RLKox cells. The expression levels of ethylene biosynthetic genes (ACC synthase and ACC oxidase) were suppressed, but those of both the metallothionein and lesion simulating disease 1 genes increased in the RLKox cells during submergence-induced hypoxia. The specific activity of catalase, which is involved in protecting ICL from reactive oxygen species, was also induced threefold in the RLKox cells. The primary roots of the transgenic plants that were exposed to hypoxic conditions grew at similar rates to those in normal conditions. We propose that CaRLK1 maintains a persistent hypoxia-resistant phenotype. |
---|---|
ISSN: | 0167-4412 1573-5028 |
DOI: | 10.1007/s11103-014-0227-4 |