Soil moisture variability in a temperate deciduous forest: insights from electrical resistivity and throughfall data

In deciduous forests, soil moisture is an important driver of numerous physical, microbial, and biogeochemical processes. Therefore, characterizing the interactions between vegetation and soil moisture is critical to forecast long-term water resources and ecosystem health. However, these interaction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental earth sciences 2014-09, Vol.72 (5), p.1367-1381
Hauptverfasser: Ma, Yuteng, Van Dam, Remke L., Jayawickreme, Dushmantha H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In deciduous forests, soil moisture is an important driver of numerous physical, microbial, and biogeochemical processes. Therefore, characterizing the interactions between vegetation and soil moisture is critical to forecast long-term water resources and ecosystem health. However, these interactions are difficult to measure, both in time and space. Recent studies have shown the ability of electrical resistivity imaging (ERI) to characterize the spatial and temporal dynamics of soil moisture at a range of scales. However, no study has yet attempted to use ERI to describe spatiotemporal variability of soil water in relation to vegetation structure and throughfall. In this study, at a mature forest site in Michigan, USA, we captured spatial and temporal dynamics of soil moisture using weekly ERI measurements augmented with throughfall and soil temperature measurements, and a detailed vegetation survey for five adjacent quadrats. Our results show that throughout the growing season, the soil moisture gradually declined despite strong variations in cumulative monthly rainfall. This decline was occasionally halted, but not reversed, during weeks with high precipitation. Spatial variability of electrical resistivity and soil moisture was not related to soil temperature differences but showed a strong correlation with canopy variables.
ISSN:1866-6280
1866-6299
DOI:10.1007/s12665-014-3362-y