Density-Based Partitioning Methods for Ground-State Molecular Calculations

With the growing complexity of systems that can be treated with modern electronic-structure methods, it is critical to develop accurate and efficient strategies to partition the systems into smaller, more tractable fragments. We review some of the various recent formalisms that have been proposed to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2014-09, Vol.118 (36), p.7623-7639
Hauptverfasser: Nafziger, Jonathan, Wasserman, Adam
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the growing complexity of systems that can be treated with modern electronic-structure methods, it is critical to develop accurate and efficient strategies to partition the systems into smaller, more tractable fragments. We review some of the various recent formalisms that have been proposed to achieve this goal using fragment (ground-state) electron densities as the main variables, with an emphasis on partition density-functional theory (PDFT), which the authors have been developing. To expose the subtle but important differences between alternative approaches and to highlight the challenges involved with density partitioning, we focus on the simplest possible systems where the various methods can be transparently compared. We provide benchmark PDFT calculations on homonuclear diatomic molecules and analyze the associated partition potentials. We derive a new exact condition determining the strength of the singularities of the partition potentials at the nuclei, establish the connection between charge-transfer and electronegativity equalization between fragments, test different ways of dealing with fractional fragment charges and spins, and finally outline a general strategy for overcoming delocalization and static-correlation errors in density-functional calculations.
ISSN:1089-5639
1520-5215
DOI:10.1021/jp504058s