Evaluation of Growth Front Velocity in Ultrastable Glasses of Indomethacin over a Wide Temperature Interval

Ultrastable thin film glasses transform into supercooled liquid via propagating fronts starting from the surface and/or interfaces. In this paper, we analyze the consequences of this mechanism in the interpretation of specific heat curves of ultrastable glasses of indomethacin for samples with varyi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2014-09, Vol.118 (36), p.10795-10801
Hauptverfasser: Rodríguez-Tinoco, Cristian, Gonzalez-Silveira, Marta, Ràfols-Ribé, Joan, Lopeandía, Aitor F, Clavaguera-Mora, Maria Teresa, Rodríguez-Viejo, Javier
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ultrastable thin film glasses transform into supercooled liquid via propagating fronts starting from the surface and/or interfaces. In this paper, we analyze the consequences of this mechanism in the interpretation of specific heat curves of ultrastable glasses of indomethacin for samples with varying thickness from 20 nm up to several microns. We demonstrate that ultrastable films above 20 nm have identical fictive temperatures and that the apparent change of onset temperature in the specific heat curves originates from the mechanism of transformation and the normalization procedure. An ad hoc surface normalization of the heat capacity yields curves which collapse into a single one irrespective of their thickness. Furthermore, we fit the surface-normalized specific heat curves with a heterogeneous transformation model to evaluate the velocity of the growth front over a much wider temperature interval than previously reported. Our data expands previous values up to Tg + 75 K, covering 12 orders of magnitude in relaxation times. The results are consistent with preceding experimental and theoretical studies. Interestingly, the mobility of the supercooled liquid in the region behind the transformation front remains constant throughout the thickness of the layers.
ISSN:1520-6106
1520-5207
DOI:10.1021/jp506782d