Field experiments on erosion by overland flow and their implication for a digital terrain model of channel initiation

Dietrich et al. (1992, 1993) proposed a digital terrain model for predicting the location of channel heads on the basis of the assumption that they occur where saturation overland flow exerts a boundary shear stress in excess of a critical value. Flume experiments were conducted in the modeled field...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research 1995-11, Vol.31 (11), p.2867-2876
Hauptverfasser: Prosser, I.P. (Commonwealth Scientific and Industrial Research Organisation, Canberra, Australia.), Dietrich, W.E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dietrich et al. (1992, 1993) proposed a digital terrain model for predicting the location of channel heads on the basis of the assumption that they occur where saturation overland flow exerts a boundary shear stress in excess of a critical value. Flume experiments were conducted in the modeled field site to evaluate the threshold hypothesis and to constrain critical shear stress and flow resistance parameters. Under complete grass cover, microtopography and grass stems were found to prevent significant sediment transport at all but the highest flows. When the grass stems were cut close to the ground, flow resistance and critical shear stress for significant sediment transport were reduced by up to an order of magnitude, but the remaining dense root mat prevented deep scour. These field experiments support the threshold assumption and the model estimations of the critical shear stress if local topographic convergence of flow is taken into account. The experiments also support the interpretation that significant degradation of vegetation cover is required for channel incision
ISSN:0043-1397
1944-7973
DOI:10.1029/95WR02218