Synthesis on Winged Graphene Nanofibers and Their Electrochemical Capacitive Performance

Assembly techniques of graphene have attracted intense attention since their performance strongly depends on the manners in which graphene nanosheets are arranged. In this work, we demonstrate a viable process to synthesize winged graphene nanofibers (G-NFs) which could generate optimized pore size...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2014-09, Vol.6 (17), p.14844-14850
Hauptverfasser: Gong, Chengshi, He, Yongmin, Zhou, Jinyuan, Chen, Wanjun, Han, Weihua, Zhang, Zhenxing, Zhang, Peng, Pan, Xiaojun, Wang, Zhiguang, Xie, Erqing
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Assembly techniques of graphene have attracted intense attention since their performance strongly depends on the manners in which graphene nanosheets are arranged. In this work, we demonstrate a viable process to synthesize winged graphene nanofibers (G-NFs) which could generate optimized pore size distribution by the fiber-like feature of graphene. The G-NF frameworks were achieved by processing the precursor graphene oxide nanosheets with the following procedures: microwave (MW) irradiation, salt addition, freeze-drying, and chemical reduction. The resultant framework composed of winged G-NFs with a diameter of 200–500 nm and a length of 5–20 μm. Moreover, the crimp degree of G-NFs can be rationally controlled by MW irradiation time. A formation mechanism of such winged G-NFs based on the synergistic effects from MW irradiation and solution ionic strength change has been proposed. With a practice in flexible electrode, after decorated with amorphous MnO2, the G-NF frameworks shows an enhanced specific capacitance compared to graphene nanosheets (G-NSs). This research has developed a controllable method to synthesis G-NFs, which can offer hierarchical pore structures, this kind of graphene nanostructure might enhance their performance in supercapacitor and related fields.
ISSN:1944-8244
1944-8252
DOI:10.1021/am5016167