Cpk Is a Novel Class of Drosophila PtdIns 3-Kinase Containing a C2 Domain
We report the identification of a novel class of phosphatidylinositol (PtdIns) 3-kinases whose members contain C-terminal C2 domains. We have isolated Drosophila and murine genes (termed cpk and cpk-m respectively) by polymerase chain reaction amplification of cDNA libraries with degenerate primers...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 1996-06, Vol.271 (23), p.13892-13899 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report the identification of a novel class of phosphatidylinositol (PtdIns) 3-kinases whose members contain C-terminal C2 domains. We have isolated Drosophila and murine genes (termed cpk and cpk-m respectively) by polymerase chain reaction amplification of cDNA libraries with degenerate primers corresponding to conserved regions of PtdIns kinases. The amino acid sequences of Cpk and Cpk-m are most similar to that of p110, a family of PtdIns 3-kinases that mediates the responses of cells to mitogenic stimuli. The Cpk and Cpk-m sequences are similar to a large, central region of p110, but differ from p110 at their N and C termini. The N termini of the Cpk proteins do not contain any recognizable protein motif, while the C termini contain “C2 domains,” a feature unique among PtdIns kinases. Cpk has an intrinsic PtdIns kinase activity and can phosphorylate PtdIns and PtdIns-4-P, but not PtdIns(4,5)P2, at the D3 position of the inositol ring. Cpk is the first PtdIns 3-kinase identified with this particular substrate specificity. We have identified two potential Cpk-binding proteins, p90 and p190, and have determined that both Cpk and p190 may be tyrosine phosphorylated. This finding suggests that Cpk function may be regulated by tyrosine kinases. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.271.23.13892 |