Inhibitory Activities of Trichostatin A in U87 Glioblastoma Cells and Tumorsphere-Derived Cells

Epigenetic alterations have been increasingly implicated in glioblastoma (GBM) pathogenesis, and epigenetic modulators including histone deacetylase inhibitors (HDACis) have been investigated as candidate therapies. GBMs are proposed to contain a subpopulation of glioblastoma stem cells (GSCs) that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular neuroscience 2014-09, Vol.54 (1), p.27-40
Hauptverfasser: Sassi, Felipe de Almeida, Caesar, Lílian, Jaeger, Mariane, Nör, Carolina, Abujamra, Ana Lucia, Schwartsmann, Gilberto, de Farias, Caroline Brunetto, Brunetto, Algemir Lunardi, Lopez, Patrícia Luciana da Costa, Roesler, Rafael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Epigenetic alterations have been increasingly implicated in glioblastoma (GBM) pathogenesis, and epigenetic modulators including histone deacetylase inhibitors (HDACis) have been investigated as candidate therapies. GBMs are proposed to contain a subpopulation of glioblastoma stem cells (GSCs) that sustain tumor progression and therapeutic resistance and can form tumorspheres in culture. Here, we investigate the effects of the HDACi trichostatin A (TSA) in U87 GBM cultures and tumorsphere-derived cells. Using approaches that include a novel method to measure tumorsphere sizes and the area covered by spheres in GBM cultures, as well as a nuclear morphometric analysis, we show that TSA reduced proliferation and colony sizes, led to G2/M arrest, induced alterations in nuclear morphology consistent with cell senescence, and increased the protein content of GFAP, but did not affect migration, in cultured human U87 GBM cells. In cells expanded in tumorsphere assays, TSA reduced sphere formation and induced neuron-like morphological changes. The expression of stemness markers in these cells was detected by reverse transcriptase polymerase chain reaction. These findings indicate that HDACis can inhibit proliferation, survival, and tumorsphere formation, and promote differentiation of U87 GBM cells, providing further evidence for the development of HDACis as potential therapeutics against GBM.
ISSN:0895-8696
1559-1166
DOI:10.1007/s12031-014-0241-7