Transport of nickel and cobalt ions into bacterial cells by S components of ECF transporters

Energy-coupling factor (ECF) transporters form a distinct group of ABC-type micronutrient importers in prokaryotes that do not contain extracytoplasmic, soluble substrate-binding proteins. Instead, they consist of a transmembrane substrate-specific S component that interacts with a module composed o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometals 2014-08, Vol.27 (4), p.653-660
Hauptverfasser: Kirsch, Franziska, Eitinger, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Energy-coupling factor (ECF) transporters form a distinct group of ABC-type micronutrient importers in prokaryotes that do not contain extracytoplasmic, soluble substrate-binding proteins. Instead, they consist of a transmembrane substrate-specific S component that interacts with a module composed of a moderately conserved transmembrane (T) component and ABC ATPases. The majority of S components is considered to act as high-affinity binding proteins that strictly depend on their cognate T and ATPase units for transport activity. For a fraction of biotin-specific S units, however, transport activity was demonstrated in their solitary state. Here, we compared the activities of nickel- and cobalt-specific ECF transporters in the presence and absence of their T and ATPase units. Accumulation assays with radioactive metal ions showed that the truncated transporters led to approx. 25 % of cell-bound radioactivity compared to the holotransporters. Activity of urease, an intracellular nickel-dependent enzyme, was used as a reporter and clearly indicated that the cell-bound radioactivity correlates with the cytoplasmic metal concentration. The results demonstrate that S units of metal transporters not only bind their substrates on the cell surface but mediate transport across the membrane, a finding of general importance on the way to understand the mechanism of ECF transporters.
ISSN:0966-0844
1572-8773
DOI:10.1007/s10534-014-9738-3