Demonstration of an Ethane Spectrometer for Methane Source Identification

Methane is an important greenhouse gas and tropospheric ozone precursor. Simultaneous observation of ethane with methane can help identify specific methane source types. Aerodyne Ethane-Mini spectrometers, employing recently available mid-infrared distributed feedback tunable diode lasers (DFB-TDL),...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2014-07, Vol.48 (14), p.8028-8034
Hauptverfasser: Yacovitch, Tara I, Herndon, Scott C, Roscioli, Joseph R, Floerchinger, Cody, McGovern, Ryan M, Agnese, Michael, Pétron, Gabrielle, Kofler, Jonathan, Sweeney, Colm, Karion, Anna, Conley, Stephen A, Kort, Eric A, Nähle, Lars, Fischer, Marc, Hildebrandt, Lars, Koeth, Johannes, McManus, J. Barry, Nelson, David D, Zahniser, Mark S, Kolb, Charles E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Methane is an important greenhouse gas and tropospheric ozone precursor. Simultaneous observation of ethane with methane can help identify specific methane source types. Aerodyne Ethane-Mini spectrometers, employing recently available mid-infrared distributed feedback tunable diode lasers (DFB-TDL), provide 1 s ethane measurements with sub-ppb precision. In this work, an Ethane-Mini spectrometer has been integrated into two mobile sampling platforms, a ground vehicle and a small airplane, and used to measure ethane/methane enhancement ratios downwind of methane sources. Methane emissions with precisely known sources are shown to have ethane/methane enhancement ratios that differ greatly depending on the source type. Large differences between biogenic and thermogenic sources are observed. Variation within thermogenic sources are detected and tabulated. Methane emitters are classified by their expected ethane content. Categories include the following: biogenic (6%), pipeline grade natural gas (30%). Regional scale observations in the Dallas/Fort Worth area of Texas show two distinct ethane/methane enhancement ratios bridged by a transitional region. These results demonstrate the usefulness of continuous and fast ethane measurements in experimental studies of methane emissions, particularly in the oil and natural gas sector.
ISSN:0013-936X
1520-5851
DOI:10.1021/es501475q