Temperature Responsive Cellulose-graft-Copolymers via Cellulose Functionalization in an Ionic Liquid and RAFT Polymerization

Well-defined cellulose-graft-polyacrylamide copolymers were synthesized in a grafting-from approach by reversible addition–fragmentation chain transfer polymerization (RAFT). A chlorine moiety (degree of substitution DS(Cl) ≈ 1.0) was introduced into the cellulose using 1-butyl-3-methylimidazolium c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomacromolecules 2014-07, Vol.15 (7), p.2563-2572
Hauptverfasser: Hufendiek, Andrea, Trouillet, Vanessa, Meier, Michael A. R, Barner-Kowollik, Christopher
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Well-defined cellulose-graft-polyacrylamide copolymers were synthesized in a grafting-from approach by reversible addition–fragmentation chain transfer polymerization (RAFT). A chlorine moiety (degree of substitution DS(Cl) ≈ 1.0) was introduced into the cellulose using 1-butyl-3-methylimidazolium chloride (BMIMCl) as solvent before being substituted by a trithiocarbonate moiety resulting in cellulose macro-chain transfer agents (cellulose-CTA) with DS(RAFT) of 0.26 and 0.41. Poly(N,N-diethylacrylamide) (PDEAAm) and poly(N-isopropylacrylamide) (PNIPAM) were subsequently grafted from these cellulose-CTAs and the polymerization kinetics, the molecular weight characteristics and the product composition were studied by nuclear magnetic resonance spectroscopy, X-ray photoelectron spectroscopy, and size exclusion chromatography of the polyacrylamides after cleavage from the cellulose chains. The number-average molecular weights, M n, of the cleaved polymers ranged from 1100 to 1600 g mol–1 for PDEAAm (dispersity Đ = 1.4–1.8) and from 1200 to 2600 g mol –1 for PNIPAM (Đ = 1.7–2.1). The LCST behavior of the cellulose-graft-copolymers was studied via the determination of cloud point temperatures, evidencing that the thermoresponsive properties of the hybrid materials could be finely tuned between 18 and 26 °C for PDEAAm and between 22 and 26 °C for PNIPAM side chains.
ISSN:1525-7797
1526-4602
DOI:10.1021/bm500416m