Metabotropic Glutamate Receptor 5 Is a Coreceptor for Alzheimer Aβ Oligomer Bound to Cellular Prion Protein
Soluble amyloid-β oligomers (Aβo) trigger Alzheimer’s disease (AD) pathophysiology and bind with high affinity to cellular prion protein (PrPC). At the postsynaptic density (PSD), extracellular Aβo bound to lipid-anchored PrPC activates intracellular Fyn kinase to disrupt synapses. Here, we screened...
Gespeichert in:
Veröffentlicht in: | Neuron (Cambridge, Mass.) Mass.), 2013-09, Vol.79 (5), p.887-902 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Soluble amyloid-β oligomers (Aβo) trigger Alzheimer’s disease (AD) pathophysiology and bind with high affinity to cellular prion protein (PrPC). At the postsynaptic density (PSD), extracellular Aβo bound to lipid-anchored PrPC activates intracellular Fyn kinase to disrupt synapses. Here, we screened transmembrane PSD proteins heterologously for the ability to couple Aβo-PrPC with Fyn. Only coexpression of the metabotropic glutamate receptor, mGluR5, allowed PrPC-bound Aβo to activate Fyn. PrPC and mGluR5 interact physically, and cytoplasmic Fyn forms a complex with mGluR5. Aβo-PrPC generates mGluR5-mediated increases of intracellular calcium in Xenopus oocytes and in neurons, and the latter is also driven by human AD brain extracts. In addition, signaling by Aβo-PrPC-mGluR5 complexes mediates eEF2 phosphorylation and dendritic spine loss. For mice expressing familial AD transgenes, mGluR5 antagonism reverses deficits in learning, memory, and synapse density. Thus, Aβo-PrPC complexes at the neuronal surface activate mGluR5 to disrupt neuronal function.
•Among transmembrane PSD proteins, only mGluR5 couples Aβo-PrPC to Fyn kinase•mGluR5 also links Aβo-PrPC to calcium signaling and protein translation control•AD brain extract-induced dysregulation of neuronal calcium requires PrPC-mGluR5•Transgenic mouse memory deficits and synapse loss are reversed by mGluR5 antagonist
Amyloid-β oligomers trigger Alzheimer’s pathophysiology by binding to PrPC and disrupting synapses. Um et al. show that the mGluR5 metabotropic glutamate receptor links Aβo-PrPC to intracellular signaling. For AD mice, mGluR5 antagonism reverses deficits in learning, memory, and synapse density. |
---|---|
ISSN: | 0896-6273 1097-4199 |
DOI: | 10.1016/j.neuron.2013.06.036 |