Three-Dimensional Heteroatom-Doped Carbon Nanofiber Networks Derived from Bacterial Cellulose for Supercapacitors

Recently, heteroatom‐doped three‐dimensional (3D) nanostructured carbon materials have attracted immense interest because of their great potential in various applications. Hence, it is highly desirable to exploit a simple, renewable, scalable, multifunctional, and general strategy to engineer 3D het...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2014-08, Vol.24 (32), p.5104-5111
Hauptverfasser: Chen, Li-Feng, Huang, Zhi-Hong, Liang, Hai-Wei, Gao, Huai-Ling, Yu, Shu-Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently, heteroatom‐doped three‐dimensional (3D) nanostructured carbon materials have attracted immense interest because of their great potential in various applications. Hence, it is highly desirable to exploit a simple, renewable, scalable, multifunctional, and general strategy to engineer 3D heteroatom‐doped carbon nanomaterials. Herein, a simple, eco‐friendly, general, and effective way to fabricate 3D heteroatom‐doped carbon nanofiber networks on a large scale is reported. Using this method, 3D P‐doped, N,P‐co‐doped, and B,P‐co‐doped carbon nanofiber networks are successfully fabricated by the pyrolysis of bacterial cellulose immersed in H3PO4, NH4H2PO4, and H3BO3/H3PO4 aqueous solution, respectively. Moreover, the as‐prepared N,P‐co‐doped carbon nanofibers exhibit good supercapacitive performance. A simple, efficient, and general approach is developed for preparing cost‐effective, three‐dimensional, and large‐scale heteroatom‐doped carbon nanofibers, such as P‐doped, N,P‐co‐doped, and B,P‐co‐doped carbon nanofibers, by pyrolyzing bacterial cellulose (BC) previously immersed in H3PO4, NH4H2PO4, and H3BO3/H3PO4, respectively. Moreover, the as‐prepared N,P‐co‐doped carbon nanofibers exhibit good supercapacitive performance.
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.201400590