Contrasting rates of coral recovery and reassembly in coral communities on the Great Barrier Reef

Changes in the relative abundances of coral taxa during recovery from disturbance may cause shifts in essential ecological processes on coral reefs. Coral cover can return to pre-disturbance levels (coral recovery) without the assemblage returning to its previous composition (i.e., without reassembl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Coral reefs 2014-09, Vol.33 (3), p.553-563
Hauptverfasser: Johns, K. A., Osborne, K. O., Logan, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Changes in the relative abundances of coral taxa during recovery from disturbance may cause shifts in essential ecological processes on coral reefs. Coral cover can return to pre-disturbance levels (coral recovery) without the assemblage returning to its previous composition (i.e., without reassembly). The processes underlying such changes are not well understood due to a scarcity of long-term studies with sufficient taxonomic resolution. We assessed the trajectories and time frames for coral recovery and reassembly of coral communities following disturbances, using modeled trajectories based on data from a broad spatial and temporal monitoring program. We studied coral communities at six reefs that suffered substantial coral loss and subsequently regained at least 50 % of their pre-disturbance coral cover. Five of the six communities regained their coral cover and the rates were remarkably consistent, taking 7–10 years. Four of the six communities reassembled to their pre-disturbance composition in 8–13 years. The coral communities at three of the reefs both regained coral cover and reassembled ten years. The trajectories of two communities suggested that they were unlikely to reassemble and the remaining community did not regain pre-disturbance coral cover. The communities that regained coral cover and reassembled had high relative abundance of tabulate Acropora spp. Coral communities of this composition appear likely to persist in a regime of pulse disturbances at intervals of ten years or more. Communities that failed to either regain coral cover or reassemble were in near-shore locations and had high relative abundance of Porites spp. and soft corals. Under current disturbance regimes, these communities are unlikely to re-establish their pre-disturbance community composition.
ISSN:0722-4028
1432-0975
DOI:10.1007/s00338-014-1148-z