The Ramsey number of the clique and the hypercube
The Ramsey number r(Ks,Qn) is the smallest positive integer N such that every red–blue colouring of the edges of the complete graph KN on N vertices contains either a red n‐dimensional hypercube, or a blue clique on s vertices. Answering a question of Burr and Erdős from 1983, and improving on recen...
Gespeichert in:
Veröffentlicht in: | Journal of the London Mathematical Society 2014-06, Vol.89 (3), p.680-702 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 702 |
---|---|
container_issue | 3 |
container_start_page | 680 |
container_title | Journal of the London Mathematical Society |
container_volume | 89 |
creator | Fiz Pontiveros, Gonzalo Griffiths, Simon Morris, Robert Saxton, David Skokan, Jozef |
description | The Ramsey number r(Ks,Qn) is the smallest positive integer N such that every red–blue colouring of the edges of the complete graph KN on N vertices contains either a red n‐dimensional hypercube, or a blue clique on s vertices. Answering a question of Burr and Erdős from 1983, and improving on recent results of Conlon, Fox, Lee and Sudakov, and of the current authors, we show that r(Ks,Qn)=(s−1)(2n−1)+1 for every s∈N and every sufficiently large n∈N. |
doi_str_mv | 10.1112/jlms/jdu004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1559709354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1559709354</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3450-81d73c59c751bc3c3585d6a918ce6ad99dc870bcfa6d39d5d275ea66f0065e373</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoOI6u_ANdClLnvaZJmqUMfjIi6LgOafLKdGinYzJF-u-t1rWrx30cLpfD2CXCDSJmi23TxsXW9wD5EZthLnWqlIBjNgPI8lQiqFN2FuMWADlCNmO43lDyZttIQ7Lr25JC0lXJYXy6pv7sKbE7_xs3w56C60s6ZyeVbSJd_N05-7i_Wy8f09Xrw9PydpU6ngtIC_SKO6GdElg67rgohJdWY-FIWq-1d4WC0lVWeq698JkSZKWsAKQgrvicXU29-9CNQ-LBtHV01DR2R10fDQqhFWgu8hG9nlAXuhgDVWYf6taGwSCYHzHmR4yZxIw0TvRX3dDwH2qeVy_vIAvg33oEZng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1559709354</pqid></control><display><type>article</type><title>The Ramsey number of the clique and the hypercube</title><source>Wiley Online Library All Journals</source><source>Alma/SFX Local Collection</source><creator>Fiz Pontiveros, Gonzalo ; Griffiths, Simon ; Morris, Robert ; Saxton, David ; Skokan, Jozef</creator><creatorcontrib>Fiz Pontiveros, Gonzalo ; Griffiths, Simon ; Morris, Robert ; Saxton, David ; Skokan, Jozef</creatorcontrib><description>The Ramsey number r(Ks,Qn) is the smallest positive integer N such that every red–blue colouring of the edges of the complete graph KN on N vertices contains either a red n‐dimensional hypercube, or a blue clique on s vertices. Answering a question of Burr and Erdős from 1983, and improving on recent results of Conlon, Fox, Lee and Sudakov, and of the current authors, we show that r(Ks,Qn)=(s−1)(2n−1)+1 for every s∈N and every sufficiently large n∈N.</description><identifier>ISSN: 0024-6107</identifier><identifier>EISSN: 1469-7750</identifier><identifier>DOI: 10.1112/jlms/jdu004</identifier><language>eng</language><publisher>Oxford University Press</publisher><subject>Burrs ; Colouring ; Graphs ; Hypercubes ; Integers ; Mathematical analysis</subject><ispartof>Journal of the London Mathematical Society, 2014-06, Vol.89 (3), p.680-702</ispartof><rights>2014 London Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3450-81d73c59c751bc3c3585d6a918ce6ad99dc870bcfa6d39d5d275ea66f0065e373</citedby><cites>FETCH-LOGICAL-c3450-81d73c59c751bc3c3585d6a918ce6ad99dc870bcfa6d39d5d275ea66f0065e373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2Fjlms%2Fjdu004$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2Fjlms%2Fjdu004$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Fiz Pontiveros, Gonzalo</creatorcontrib><creatorcontrib>Griffiths, Simon</creatorcontrib><creatorcontrib>Morris, Robert</creatorcontrib><creatorcontrib>Saxton, David</creatorcontrib><creatorcontrib>Skokan, Jozef</creatorcontrib><title>The Ramsey number of the clique and the hypercube</title><title>Journal of the London Mathematical Society</title><description>The Ramsey number r(Ks,Qn) is the smallest positive integer N such that every red–blue colouring of the edges of the complete graph KN on N vertices contains either a red n‐dimensional hypercube, or a blue clique on s vertices. Answering a question of Burr and Erdős from 1983, and improving on recent results of Conlon, Fox, Lee and Sudakov, and of the current authors, we show that r(Ks,Qn)=(s−1)(2n−1)+1 for every s∈N and every sufficiently large n∈N.</description><subject>Burrs</subject><subject>Colouring</subject><subject>Graphs</subject><subject>Hypercubes</subject><subject>Integers</subject><subject>Mathematical analysis</subject><issn>0024-6107</issn><issn>1469-7750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAURYMoOI6u_ANdClLnvaZJmqUMfjIi6LgOafLKdGinYzJF-u-t1rWrx30cLpfD2CXCDSJmi23TxsXW9wD5EZthLnWqlIBjNgPI8lQiqFN2FuMWADlCNmO43lDyZttIQ7Lr25JC0lXJYXy6pv7sKbE7_xs3w56C60s6ZyeVbSJd_N05-7i_Wy8f09Xrw9PydpU6ngtIC_SKO6GdElg67rgohJdWY-FIWq-1d4WC0lVWeq698JkSZKWsAKQgrvicXU29-9CNQ-LBtHV01DR2R10fDQqhFWgu8hG9nlAXuhgDVWYf6taGwSCYHzHmR4yZxIw0TvRX3dDwH2qeVy_vIAvg33oEZng</recordid><startdate>201406</startdate><enddate>201406</enddate><creator>Fiz Pontiveros, Gonzalo</creator><creator>Griffiths, Simon</creator><creator>Morris, Robert</creator><creator>Saxton, David</creator><creator>Skokan, Jozef</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201406</creationdate><title>The Ramsey number of the clique and the hypercube</title><author>Fiz Pontiveros, Gonzalo ; Griffiths, Simon ; Morris, Robert ; Saxton, David ; Skokan, Jozef</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3450-81d73c59c751bc3c3585d6a918ce6ad99dc870bcfa6d39d5d275ea66f0065e373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Burrs</topic><topic>Colouring</topic><topic>Graphs</topic><topic>Hypercubes</topic><topic>Integers</topic><topic>Mathematical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fiz Pontiveros, Gonzalo</creatorcontrib><creatorcontrib>Griffiths, Simon</creatorcontrib><creatorcontrib>Morris, Robert</creatorcontrib><creatorcontrib>Saxton, David</creatorcontrib><creatorcontrib>Skokan, Jozef</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fiz Pontiveros, Gonzalo</au><au>Griffiths, Simon</au><au>Morris, Robert</au><au>Saxton, David</au><au>Skokan, Jozef</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Ramsey number of the clique and the hypercube</atitle><jtitle>Journal of the London Mathematical Society</jtitle><date>2014-06</date><risdate>2014</risdate><volume>89</volume><issue>3</issue><spage>680</spage><epage>702</epage><pages>680-702</pages><issn>0024-6107</issn><eissn>1469-7750</eissn><abstract>The Ramsey number r(Ks,Qn) is the smallest positive integer N such that every red–blue colouring of the edges of the complete graph KN on N vertices contains either a red n‐dimensional hypercube, or a blue clique on s vertices. Answering a question of Burr and Erdős from 1983, and improving on recent results of Conlon, Fox, Lee and Sudakov, and of the current authors, we show that r(Ks,Qn)=(s−1)(2n−1)+1 for every s∈N and every sufficiently large n∈N.</abstract><pub>Oxford University Press</pub><doi>10.1112/jlms/jdu004</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-6107 |
ispartof | Journal of the London Mathematical Society, 2014-06, Vol.89 (3), p.680-702 |
issn | 0024-6107 1469-7750 |
language | eng |
recordid | cdi_proquest_miscellaneous_1559709354 |
source | Wiley Online Library All Journals; Alma/SFX Local Collection |
subjects | Burrs Colouring Graphs Hypercubes Integers Mathematical analysis |
title | The Ramsey number of the clique and the hypercube |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A48%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Ramsey%20number%20of%20the%20clique%20and%20the%20hypercube&rft.jtitle=Journal%20of%20the%20London%20Mathematical%20Society&rft.au=Fiz%20Pontiveros,%20Gonzalo&rft.date=2014-06&rft.volume=89&rft.issue=3&rft.spage=680&rft.epage=702&rft.pages=680-702&rft.issn=0024-6107&rft.eissn=1469-7750&rft_id=info:doi/10.1112/jlms/jdu004&rft_dat=%3Cproquest_cross%3E1559709354%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1559709354&rft_id=info:pmid/&rfr_iscdi=true |