The Ramsey number of the clique and the hypercube
The Ramsey number r(Ks,Qn) is the smallest positive integer N such that every red–blue colouring of the edges of the complete graph KN on N vertices contains either a red n‐dimensional hypercube, or a blue clique on s vertices. Answering a question of Burr and Erdős from 1983, and improving on recen...
Gespeichert in:
Veröffentlicht in: | Journal of the London Mathematical Society 2014-06, Vol.89 (3), p.680-702 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Ramsey number r(Ks,Qn) is the smallest positive integer N such that every red–blue colouring of the edges of the complete graph KN on N vertices contains either a red n‐dimensional hypercube, or a blue clique on s vertices. Answering a question of Burr and Erdős from 1983, and improving on recent results of Conlon, Fox, Lee and Sudakov, and of the current authors, we show that r(Ks,Qn)=(s−1)(2n−1)+1 for every s∈N and every sufficiently large n∈N. |
---|---|
ISSN: | 0024-6107 1469-7750 |
DOI: | 10.1112/jlms/jdu004 |