Approximating Minimum-Cost $k$-Node Connected Subgraphs via Independence-Free Graphs
We present a 6-approximation algorithm for the minimum-cost $k$-node connected spanning subgraph problem, assuming that the number of nodes is at least $k reversible reaction (k-1)+k$. We apply a combinatorial preprocessing, based on the Frank--Tardos algorithm for $k$-outconnectivity, to transform...
Gespeichert in:
Veröffentlicht in: | SIAM journal on computing 2014-01, Vol.43 (4), p.1342-1362 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a 6-approximation algorithm for the minimum-cost $k$-node connected spanning subgraph problem, assuming that the number of nodes is at least $k reversible reaction (k-1)+k$. We apply a combinatorial preprocessing, based on the Frank--Tardos algorithm for $k$-outconnectivity, to transform any input into an instance such that the iterative rounding method gives a 2-approximation guarantee. This is the first constant factor approximation algorithm even in the asymptotic setting of the problem, that is, the restriction to instances where the number of nodes is lower bounded by a function of $k$. |
---|---|
ISSN: | 0097-5397 1095-7111 |
DOI: | 10.1137/120902847 |