Master-Slave Algorithm for Highly Accurate and Rapid Computation of the Voigt/Complex Error Function

We obtain a rational approximation of the Voigt/complex error function by Fourier expansion of the exponential function e super( -(t-2 sigma ))sup 2 and present master-slave algorithm for its efficient computation. The error analysis shows that at y > 10 super( -5) the computed values match with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematics research 2014-06, Vol.6 (2), p.104-104
Hauptverfasser: Abrarov, S. M., Quine, B. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We obtain a rational approximation of the Voigt/complex error function by Fourier expansion of the exponential function e super( -(t-2 sigma ))sup 2 and present master-slave algorithm for its efficient computation. The error analysis shows that at y > 10 super( -5) the computed values match with highly accurate references up to the last decimal digits. The common problem that occurs at y arrow right 0 is effectively resolved by main and supplementary approximations running computation flow in a master-slave mode. Since the proposed approximation is rational function, it can be implemented in a rapid algorithm.
ISSN:1916-9795
1916-9809
DOI:10.5539/jmr.v6n2p104