Master-Slave Algorithm for Highly Accurate and Rapid Computation of the Voigt/Complex Error Function
We obtain a rational approximation of the Voigt/complex error function by Fourier expansion of the exponential function e super( -(t-2 sigma ))sup 2 and present master-slave algorithm for its efficient computation. The error analysis shows that at y > 10 super( -5) the computed values match with...
Gespeichert in:
Veröffentlicht in: | Journal of mathematics research 2014-06, Vol.6 (2), p.104-104 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We obtain a rational approximation of the Voigt/complex error function by Fourier expansion of the exponential function e super( -(t-2 sigma ))sup 2 and present master-slave algorithm for its efficient computation. The error analysis shows that at y > 10 super( -5) the computed values match with highly accurate references up to the last decimal digits. The common problem that occurs at y arrow right 0 is effectively resolved by main and supplementary approximations running computation flow in a master-slave mode. Since the proposed approximation is rational function, it can be implemented in a rapid algorithm. |
---|---|
ISSN: | 1916-9795 1916-9809 |
DOI: | 10.5539/jmr.v6n2p104 |