Vertex Sparsifiers: New Results from Old Techniques
Given a capacitated graph $G = (V,E)$ and a set of terminals $K \subseteq V$, how should we produce a graph $H$ only on the terminals $K$ so that every (multicommodity) flow between the terminals in $G$ could be supported in $H$ with low congestion, and vice versa? (Such a graph $H$ is called a flow...
Gespeichert in:
Veröffentlicht in: | SIAM journal on computing 2014-01, Vol.43 (4), p.1239-1262 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given a capacitated graph $G = (V,E)$ and a set of terminals $K \subseteq V$, how should we produce a graph $H$ only on the terminals $K$ so that every (multicommodity) flow between the terminals in $G$ could be supported in $H$ with low congestion, and vice versa? (Such a graph $H$ is called a flow sparsifier for $G$.) What if we want $H$ to be a "simple" graph? What if we allow $H$ to be a convex combination of simple graphs? Improving on results of Moitra [Proceedings of the 50th IEEE Symposium on Foundations of Computer Science , IEEE Computer Society, Los Alamitos, CA, 2009, pp. 3--12] and Leighton and Moitra [Proceedings of the 42nd ACM Symposium on Theory of Computing , ACM, New York, 2010, pp. 47--56], we give efficient algorithms for constructing (a) a flow sparsifier $H$ that maintains congestion up to a factor of $O(\frac{\log k}{\log \log k})$, where $k = |
---|---|
ISSN: | 0097-5397 1095-7111 |
DOI: | 10.1137/130908440 |