Vertex Sparsifiers: New Results from Old Techniques

Given a capacitated graph $G = (V,E)$ and a set of terminals $K \subseteq V$, how should we produce a graph $H$ only on the terminals $K$ so that every (multicommodity) flow between the terminals in $G$ could be supported in $H$ with low congestion, and vice versa? (Such a graph $H$ is called a flow...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on computing 2014-01, Vol.43 (4), p.1239-1262
Hauptverfasser: Englert, Matthias, Gupta, Anupam, Krauthgamer, Robert, Racke, Harald, Talgam-Cohen, Inbal, Talwar, Kunal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a capacitated graph $G = (V,E)$ and a set of terminals $K \subseteq V$, how should we produce a graph $H$ only on the terminals $K$ so that every (multicommodity) flow between the terminals in $G$ could be supported in $H$ with low congestion, and vice versa? (Such a graph $H$ is called a flow sparsifier for $G$.) What if we want $H$ to be a "simple" graph? What if we allow $H$ to be a convex combination of simple graphs? Improving on results of Moitra [Proceedings of the 50th IEEE Symposium on Foundations of Computer Science , IEEE Computer Society, Los Alamitos, CA, 2009, pp. 3--12] and Leighton and Moitra [Proceedings of the 42nd ACM Symposium on Theory of Computing , ACM, New York, 2010, pp. 47--56], we give efficient algorithms for constructing (a) a flow sparsifier $H$ that maintains congestion up to a factor of $O(\frac{\log k}{\log \log k})$, where $k =
ISSN:0097-5397
1095-7111
DOI:10.1137/130908440