Electrospun polyamide–polyethylene glycol nanofibers for headspace solid‐phase microextration

A solution of polyamide (PA) containing polyethylene glycol (PEG) as a side low‐molecular‐weight polymer was electrospun. After synthesizing the PA–PEG nanofibers, the constituent was subsequently removed (modified PA) and confirmed by Fourier transform infrared spectroscopy. The scanning electron m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of separation science 2014-07, Vol.37 (14), p.1880-1886
Hauptverfasser: Bagheri, Habib, Najarzadekan, Hamid, Roostaie, Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A solution of polyamide (PA) containing polyethylene glycol (PEG) as a side low‐molecular‐weight polymer was electrospun. After synthesizing the PA–PEG nanofibers, the constituent was subsequently removed (modified PA) and confirmed by Fourier transform infrared spectroscopy. The scanning electron microscopy images showed an average diameter of 640 and 148 nm for PA and PA–PEG coatings, respectively, while the latter coating structure was more homogeneous and porous. The extraction efficiencies of PA, PA–PEG, and the modified PA fiber coatings were assayed by headspace solid‐phase microextraction of a number of chlorophenols from real water samples followed by their determination by gas chromatography with mass spectrometry. To prepare the most appropriate coatings, the amounts and the flow rate of the electrospinning solution were investigated. Various extraction parameters, such as the salt content, desorption condition, extraction temperature, and time were optimized. The limits of detection of the method were in the range of 0.8–25 ng/L, while the RSDs at two concentration levels of 200 and 80 ng/L were between 2.1 and 12.2%. The analysis of real water samples led to relative recoveries between 85 and 98% with a linearity of 8–1500 ng/L.
ISSN:1615-9306
1615-9314
DOI:10.1002/jssc.201400037