Kaehler-Einstein fillings
We show that on an open bounded smooth strongly pseudoconvex subset of Cn, there exists a Kaehler-Einstein metric with positive Einstein constant, such that the metric restricted to the Levi distribution of the boundary is conformal to the Levi form. To achieve this, we solve an associated complex M...
Gespeichert in:
Veröffentlicht in: | Journal of the London Mathematical Society 2013-12, Vol.88 (3), p.737-760 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that on an open bounded smooth strongly pseudoconvex subset of Cn, there exists a Kaehler-Einstein metric with positive Einstein constant, such that the metric restricted to the Levi distribution of the boundary is conformal to the Levi form. To achieve this, we solve an associated complex Monge-Ampere equation with Dirichlet boundary condition. We also prove uniqueness of the solution subject to additional restrictions. |
---|---|
ISSN: | 0024-6107 |
DOI: | 10.1112/jlms/jdt031 |