On the family of affine threefolds
Let $k$ be a field and $\mathbb{V}$ the affine threefold in $\mathbb{A}^4_k$ defined by $x^m y=F(x, z, t)$ , $m \ge 2$ . In this paper, we show that $\mathbb{V} \cong \mathbb{A}^3_k$ if and only if $f(z, t): = F(0, z, t)$ is a coordinate of $k[z, t]$ . In particular, when $k$ is a field of positive...
Gespeichert in:
Veröffentlicht in: | Compositio mathematica 2014-06, Vol.150 (6), p.979-998 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
$k$
be a field and
$\mathbb{V}$
the affine threefold in
$\mathbb{A}^4_k$
defined by
$x^m y=F(x, z, t)$
,
$m \ge 2$
. In this paper, we show that
$\mathbb{V} \cong \mathbb{A}^3_k$
if and only if
$f(z, t): = F(0, z, t)$
is a coordinate of
$k[z, t]$
. In particular, when
$k$
is a field of positive characteristic and
$f$
defines a non-trivial line in the affine plane
$\mathbb{A}^2_k$
(we shall call such a
$\mathbb{V}$
as an Asanuma threefold), then
$\mathbb{V}\ncong \mathbb{A}^3_k$
although
$\mathbb{V} \times \mathbb{A}^1_k \cong \mathbb{A}^4_k$
, thereby providing a family of counter-examples to Zariski’s cancellation conjecture for the affine 3-space in positive characteristic. Our main result also proves a special case of the embedding conjecture of Abhyankar–Sathaye in arbitrary characteristic. |
---|---|
ISSN: | 0010-437X 1570-5846 |
DOI: | 10.1112/S0010437X13007793 |