Transposable character tables and group duality

One way of expressing the self-duality $A\cong {\rm Hom}(A,\mathbb{C})$ of Abelian groups is that their character tables are self-transpose (in a suitable ordering). In this paper we extend the duality to some noncommutative groups considering when the character table of a finite group is close to b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical proceedings of the Cambridge Philosophical Society 2014-07, Vol.157 (1), p.31-44
Hauptverfasser: ANDRUS, IVAN, HEGEDŰS, PÁL, OKUYAMA, TETSURO
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:One way of expressing the self-duality $A\cong {\rm Hom}(A,\mathbb{C})$ of Abelian groups is that their character tables are self-transpose (in a suitable ordering). In this paper we extend the duality to some noncommutative groups considering when the character table of a finite group is close to being the transpose of the character table for some other group. We find that groups dual to each other have dual normal subgroup lattices. We show that our concept of duality cannot work for non-nilpotent groups and we describe p-group examples.
ISSN:0305-0041
1469-8064
DOI:10.1017/S0305004114000218