A Grid-Level High-Power BTB (Back-To-Back) System Using Modular Multilevel Cascade Converters WithoutCommon DC-Link Capacitor

This paper provides an intensive discussion on analysis, simulation, and experiment of a back-to-back (BTB) system unifying two modular multilevel cascade converters based on double-star chopper cells (MMCCs-DSCCs). Each of the two DSCCs connected back-to-back consists of multiple cascaded chopper c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industry applications 2014-07, Vol.50 (4), p.2648-2659
Hauptverfasser: Sekiguchi, Kei, Khamphakdi, Pracha, Hagiwara, Makoto, Akagi, Hirofumi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper provides an intensive discussion on analysis, simulation, and experiment of a back-to-back (BTB) system unifying two modular multilevel cascade converters based on double-star chopper cells (MMCCs-DSCCs). Each of the two DSCCs connected back-to-back consists of multiple cascaded chopper cells and a center-tapped inductor per leg. Low voltage steps bring significant reductions in harmonic voltage and current to the BTB system. Neither dc-link capacitor nor voltage sensor is required for regulating the dc-link voltage and controlling the dc-link current. A three-phase 200-V, 10-kW, 50-Hz downscaled BTB system with phase-shifted PWM is designed, constructed, and tested to verify its operating principles and performance. Analytical, simulated, and experimental results agree well with each other in steady and transient states. Experimental waveforms confirm the effectiveness of a self-starting/restarting procedure.
ISSN:0093-9994
1939-9367
DOI:10.1109/TIA.2013.2290867