Routing the asteroid surface vehicle with detailed mechanics

The motion of a surface vehicle on/above an irregular object is inv.estigated for a potential interest in the insitu explorations to asteroids of the solar system. A global valid numeric method, including detailed gravity and geo- morphology, is developed to mimic the behaviors of the test particles...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mechanica Sinica 2014-06, Vol.30 (3), p.301-309
Hauptverfasser: Yu, Yang, Baoyin, He-Xi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The motion of a surface vehicle on/above an irregular object is inv.estigated for a potential interest in the insitu explorations to asteroids of the solar system. A global valid numeric method, including detailed gravity and geo- morphology, is developed to mimic the behaviors of the test particles governed by the orbital equations and surface cou- pling effects. A general discussion on the surface mechanical environment of a specified asteroid, 1620 Geographos, is presented to make a global evaluation of the surface vehicle's working conditions. We show the connections between the natural trajectories near the ground and differential features of the asteroid surface, which describes both the good and bad of typical terrains from the viewpoint of vehicles' dynamic performances. Monte Carlo simulations are performed to take a further look at the trajectories of particles initializing near the surface. The simulations reveal consistent conclusions with the analysis, i.e., the open- field flat ground and slightly concave basins/valleys are the best choices for the vehicles' dynamical security. The dependence of decending trajectories on the releasing height is studied as an application; the results show that the pole direction (where the centrifugal force is zero) is the most stable direction in which the shift of a natural trajectory will be well limited after landing. We present this work as an example for pre-analysis that provides guidance to engineering design of the exploration site and routing the surface vehicles.
ISSN:0567-7718
1614-3116
DOI:10.1007/s10409-014-0052-7