On the parameterized vertex cover problem for graphs with perfect matching

A vertex cover of an n-vertex graph with perfect matching contains at least n/2 vertices.In this paper,we study the parameterized complexity of the problem vc-pm^*that decides if a given graph with perfect matching has a vertex cover of size bounded by n/2+k.We first present an algorithm of running...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Information sciences 2014-07, Vol.57 (7), p.101-112
Hauptverfasser: Wang, JianXin, Li, WenJun, Li, ShaoHua, Chen, JianEr
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A vertex cover of an n-vertex graph with perfect matching contains at least n/2 vertices.In this paper,we study the parameterized complexity of the problem vc-pm^*that decides if a given graph with perfect matching has a vertex cover of size bounded by n/2+k.We first present an algorithm of running time O^*(4k)for a variation of the vertex cover problem on Konig graphs with perfect matching.This algorithm combined with the iterative compression technique leads to an algorithm of running time O^*(9k)for the problem vc-pm^*.Our result improves the previous best algorithm of running time O^*(15k)for the vc-pm^*problem,which reduces the problem to the almost 2-sat problem and solves the latter by Razgon and O’Sullivan’s recent algorithm.
ISSN:1674-733X
1869-1919
DOI:10.1007/s11432-013-4845-2