Thiolated human serum albumin cross-linked dextran hydrogels as a macroscale delivery system

Hydrogels play an important role in macroscale delivery systems by enabling the transport of cells and molecules. Here we present a facile and benign method to prepare a dextran-based hydrogel (Dex-sHSA) using human serum albumin (HSA) as a simultaneous drug carrier and covalent cross-linker. Drug b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft matter 2014-07, Vol.10 (27), p.4869-4874
Hauptverfasser: Gao, Yue, Kieltyka, Roxanne E, Jesse, Wim, Norder, Ben, Korobko, Alexander V, Kros, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hydrogels play an important role in macroscale delivery systems by enabling the transport of cells and molecules. Here we present a facile and benign method to prepare a dextran-based hydrogel (Dex-sHSA) using human serum albumin (HSA) as a simultaneous drug carrier and covalent cross-linker. Drug binding affinity of the albumin protein was conserved in the thiolation step using 2-iminothiolane and subsequently, in the in situ gelation step. Oscillation rheometry studies confirmed the formation of a three-dimensional viscoelastic network upon reaction of dextran and the HSA protein. The mechanical properties of Dex-sHSA hydrogel can be tuned by the protein concentration, and the degree of thiolation of sHSA. Sustained release of hydrophobic drugs, such as ibuprofen, paclitaxel and dexamethasone, from the Dex-sHSA network was shown over one week. Hence, this albumin-based dextran hydrogel system demonstrates its potential as a macroscale delivery system of hydrophobic therapeutics for a wide range of biomedical applications.
ISSN:1744-683X
1744-6848
DOI:10.1039/c4sm00648h