Crosslinked PVA nanofibers reinforced with cellulose nanocrystals: Water interactions and thermomechanical properties

ABSTRACT Acid‐catalyzed vapor phase esterification with maleic anhydride was used to improve the integrity and thermo‐mechanical properties of fiber webs based on poly(vinyl alcohol), PVA. The fibers were produced by electrospinning PVA from aqueous dispersions containing cellulose nanocrystals (CNC...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2014-06, Vol.131 (11), p.np-n/a
Hauptverfasser: Peresin, Maria Soledad, Vesterinen, Arja-Helena, Habibi, Youssef, Johansson, Leena-Sisko, Pawlak, Joel J., Nevzorov, Alexander A., Rojas, Orlando J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT Acid‐catalyzed vapor phase esterification with maleic anhydride was used to improve the integrity and thermo‐mechanical properties of fiber webs based on poly(vinyl alcohol), PVA. The fibers were produced by electrospinning PVA from aqueous dispersions containing cellulose nanocrystals (CNCs). The effect of esterification and CNC loading on the structure and solvent resistance of the electrospun fibers was investigated. Chemical characterization of the fibers (FTIR, NMR) indicated the formation of ester bonds between hydroxyl groups belonging to neighboring molecules. Thermomechanical properties after chemical modification were analyzed using thermal gravimetric analysis, differential scanning calorimetry, and dynamic mechanical analysis. An 80% improvement in the ultimate strength was achieved for CNC‐loaded, crosslinked PVA fiber webs measured at 90% air relative humidity. Besides the ultra‐high surface area, the composite PVA fiber webs were water resistant and presented excellent mechanical properties. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 40334.
ISSN:0021-8995
1097-4628
DOI:10.1002/app.40334