On eccentric distance sum and minimum degree
Let GG be a connected graph of order nn and minimum degree delta greater than or equal to 2 delta greater than or equal to 2. The eccentric distance sum xi super(d)(G) xi d(G) of GG is defined as capital sigma v[isin]V(G)ecG(v)DG(v), where ecG(v) is the eccentricity of vertex vv in GG and D sub(G)(v...
Gespeichert in:
Veröffentlicht in: | Discrete Applied Mathematics 2014-10, Vol.175, p.55-61 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let GG be a connected graph of order nn and minimum degree delta greater than or equal to 2 delta greater than or equal to 2. The eccentric distance sum xi super(d)(G) xi d(G) of GG is defined as capital sigma v[isin]V(G)ecG(v)DG(v), where ecG(v) is the eccentricity of vertex vv in GG and D sub(G)(v)DG(v) is the sum of all distances from vv to other vertices of GG. We prove the upper bound xi d(G) less than or equal to 3 times 5225( delta +1)2n4+O(n3). Our bound is, for a fixed delta delta , asymptotically sharp and it extends a result of Ilic, Yu and Feng (2011), and that of Zhang and Li (2011). |
---|---|
ISSN: | 0166-218X |
DOI: | 10.1016/j.dam.2014.05.019 |