On eccentric distance sum and minimum degree

Let GG be a connected graph of order nn and minimum degree delta greater than or equal to 2 delta greater than or equal to 2. The eccentric distance sum xi super(d)(G) xi d(G) of GG is defined as capital sigma v[isin]V(G)ecG(v)DG(v), where ecG(v) is the eccentricity of vertex vv in GG and D sub(G)(v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2014-10, Vol.175, p.55-61
Hauptverfasser: Mukungunugwa, Vivian, Mukwembi, Simon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let GG be a connected graph of order nn and minimum degree delta greater than or equal to 2 delta greater than or equal to 2. The eccentric distance sum xi super(d)(G) xi d(G) of GG is defined as capital sigma v[isin]V(G)ecG(v)DG(v), where ecG(v) is the eccentricity of vertex vv in GG and D sub(G)(v)DG(v) is the sum of all distances from vv to other vertices of GG. We prove the upper bound xi d(G) less than or equal to 3 times 5225( delta +1)2n4+O(n3). Our bound is, for a fixed delta delta , asymptotically sharp and it extends a result of Ilic, Yu and Feng (2011), and that of Zhang and Li (2011).
ISSN:0166-218X
DOI:10.1016/j.dam.2014.05.019