A Chebyshev spectral method for solving Riemann–Liouville fractional boundary value problems
The authors derive a series of explicit formulas to approximate the Riemann–Liouville derivative and integral of arbitrary order by shifted Chebyshev polynomials. This is then applied to solve boundary value problems involving Riemann–Liouville derivatives.
Gespeichert in:
Veröffentlicht in: | Applied mathematics and computation 2014-08, Vol.241, p.140-150 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 150 |
---|---|
container_issue | |
container_start_page | 140 |
container_title | Applied mathematics and computation |
container_volume | 241 |
creator | Graef, John R. Kong, Lingju Wang, Min |
description | The authors derive a series of explicit formulas to approximate the Riemann–Liouville derivative and integral of arbitrary order by shifted Chebyshev polynomials. This is then applied to solve boundary value problems involving Riemann–Liouville derivatives. |
doi_str_mv | 10.1016/j.amc.2014.05.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1559651835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300314006687</els_id><sourcerecordid>1559651835</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-220e2f121c5b8dad10558e64a3507d3a8414dbf8f3625a0702a7fbd42ebf38a53</originalsourceid><addsrcrecordid>eNp9kLFu2zAQhomiAeo6eYBuHLtIPZKiJKOTYbRpAAMBgmQNQZHHmgYluqQkIFveIW_YJ6kMZ-50y__9d_cR8oVByYDV346l7k3JgVUlyBIY_0BWrG1EIetq85GsADZ1IQDEJ_I55yMANDWrVuR5S3cH7F7yAWeaT2jGpAPtcTxES11MNMcw--E3ffDY62H4-_q293GafQhIXdJm9HFYiC5Og9Xphc46TEhPKXYB-3xNrpwOGW_e55o8_fzxuPtV7O9v73bbfWGEgLHgHJA7xpmRXWu1ZSBli3WlhYTGCt1WrLKda52oudTQANeN62zFsXOi1VKsyddL77L4z4R5VL3PBkPQA8YpKyblppasFecou0RNijkndOqUfL-crhios0t1VItLdXapQKrF5cJ8vzC4_DB7TCobj4NB69OiTNno_0P_Ax6yfmk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1559651835</pqid></control><display><type>article</type><title>A Chebyshev spectral method for solving Riemann–Liouville fractional boundary value problems</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Graef, John R. ; Kong, Lingju ; Wang, Min</creator><creatorcontrib>Graef, John R. ; Kong, Lingju ; Wang, Min</creatorcontrib><description>The authors derive a series of explicit formulas to approximate the Riemann–Liouville derivative and integral of arbitrary order by shifted Chebyshev polynomials. This is then applied to solve boundary value problems involving Riemann–Liouville derivatives.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2014.05.012</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Approximation ; Boundary value problems ; Chebyshev approximation ; Chebyshev polynomials ; Collocation method ; Derivatives ; Integrals ; Mathematical analysis ; Polynomials ; Riemann–Liouville fractional calculus ; Spectral methods</subject><ispartof>Applied mathematics and computation, 2014-08, Vol.241, p.140-150</ispartof><rights>2014 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-220e2f121c5b8dad10558e64a3507d3a8414dbf8f3625a0702a7fbd42ebf38a53</citedby><cites>FETCH-LOGICAL-c330t-220e2f121c5b8dad10558e64a3507d3a8414dbf8f3625a0702a7fbd42ebf38a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0096300314006687$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Graef, John R.</creatorcontrib><creatorcontrib>Kong, Lingju</creatorcontrib><creatorcontrib>Wang, Min</creatorcontrib><title>A Chebyshev spectral method for solving Riemann–Liouville fractional boundary value problems</title><title>Applied mathematics and computation</title><description>The authors derive a series of explicit formulas to approximate the Riemann–Liouville derivative and integral of arbitrary order by shifted Chebyshev polynomials. This is then applied to solve boundary value problems involving Riemann–Liouville derivatives.</description><subject>Approximation</subject><subject>Boundary value problems</subject><subject>Chebyshev approximation</subject><subject>Chebyshev polynomials</subject><subject>Collocation method</subject><subject>Derivatives</subject><subject>Integrals</subject><subject>Mathematical analysis</subject><subject>Polynomials</subject><subject>Riemann–Liouville fractional calculus</subject><subject>Spectral methods</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kLFu2zAQhomiAeo6eYBuHLtIPZKiJKOTYbRpAAMBgmQNQZHHmgYluqQkIFveIW_YJ6kMZ-50y__9d_cR8oVByYDV346l7k3JgVUlyBIY_0BWrG1EIetq85GsADZ1IQDEJ_I55yMANDWrVuR5S3cH7F7yAWeaT2jGpAPtcTxES11MNMcw--E3ffDY62H4-_q293GafQhIXdJm9HFYiC5Og9Xphc46TEhPKXYB-3xNrpwOGW_e55o8_fzxuPtV7O9v73bbfWGEgLHgHJA7xpmRXWu1ZSBli3WlhYTGCt1WrLKda52oudTQANeN62zFsXOi1VKsyddL77L4z4R5VL3PBkPQA8YpKyblppasFecou0RNijkndOqUfL-crhios0t1VItLdXapQKrF5cJ8vzC4_DB7TCobj4NB69OiTNno_0P_Ax6yfmk</recordid><startdate>20140815</startdate><enddate>20140815</enddate><creator>Graef, John R.</creator><creator>Kong, Lingju</creator><creator>Wang, Min</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140815</creationdate><title>A Chebyshev spectral method for solving Riemann–Liouville fractional boundary value problems</title><author>Graef, John R. ; Kong, Lingju ; Wang, Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-220e2f121c5b8dad10558e64a3507d3a8414dbf8f3625a0702a7fbd42ebf38a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Approximation</topic><topic>Boundary value problems</topic><topic>Chebyshev approximation</topic><topic>Chebyshev polynomials</topic><topic>Collocation method</topic><topic>Derivatives</topic><topic>Integrals</topic><topic>Mathematical analysis</topic><topic>Polynomials</topic><topic>Riemann–Liouville fractional calculus</topic><topic>Spectral methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Graef, John R.</creatorcontrib><creatorcontrib>Kong, Lingju</creatorcontrib><creatorcontrib>Wang, Min</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Graef, John R.</au><au>Kong, Lingju</au><au>Wang, Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Chebyshev spectral method for solving Riemann–Liouville fractional boundary value problems</atitle><jtitle>Applied mathematics and computation</jtitle><date>2014-08-15</date><risdate>2014</risdate><volume>241</volume><spage>140</spage><epage>150</epage><pages>140-150</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><abstract>The authors derive a series of explicit formulas to approximate the Riemann–Liouville derivative and integral of arbitrary order by shifted Chebyshev polynomials. This is then applied to solve boundary value problems involving Riemann–Liouville derivatives.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2014.05.012</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0096-3003 |
ispartof | Applied mathematics and computation, 2014-08, Vol.241, p.140-150 |
issn | 0096-3003 1873-5649 |
language | eng |
recordid | cdi_proquest_miscellaneous_1559651835 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Approximation Boundary value problems Chebyshev approximation Chebyshev polynomials Collocation method Derivatives Integrals Mathematical analysis Polynomials Riemann–Liouville fractional calculus Spectral methods |
title | A Chebyshev spectral method for solving Riemann–Liouville fractional boundary value problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T21%3A18%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Chebyshev%20spectral%20method%20for%20solving%20Riemann%E2%80%93Liouville%20fractional%20boundary%20value%20problems&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Graef,%20John%20R.&rft.date=2014-08-15&rft.volume=241&rft.spage=140&rft.epage=150&rft.pages=140-150&rft.issn=0096-3003&rft.eissn=1873-5649&rft_id=info:doi/10.1016/j.amc.2014.05.012&rft_dat=%3Cproquest_cross%3E1559651835%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1559651835&rft_id=info:pmid/&rft_els_id=S0096300314006687&rfr_iscdi=true |