A Chebyshev spectral method for solving Riemann–Liouville fractional boundary value problems

The authors derive a series of explicit formulas to approximate the Riemann–Liouville derivative and integral of arbitrary order by shifted Chebyshev polynomials. This is then applied to solve boundary value problems involving Riemann–Liouville derivatives.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation 2014-08, Vol.241, p.140-150
Hauptverfasser: Graef, John R., Kong, Lingju, Wang, Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 150
container_issue
container_start_page 140
container_title Applied mathematics and computation
container_volume 241
creator Graef, John R.
Kong, Lingju
Wang, Min
description The authors derive a series of explicit formulas to approximate the Riemann–Liouville derivative and integral of arbitrary order by shifted Chebyshev polynomials. This is then applied to solve boundary value problems involving Riemann–Liouville derivatives.
doi_str_mv 10.1016/j.amc.2014.05.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1559651835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300314006687</els_id><sourcerecordid>1559651835</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-220e2f121c5b8dad10558e64a3507d3a8414dbf8f3625a0702a7fbd42ebf38a53</originalsourceid><addsrcrecordid>eNp9kLFu2zAQhomiAeo6eYBuHLtIPZKiJKOTYbRpAAMBgmQNQZHHmgYluqQkIFveIW_YJ6kMZ-50y__9d_cR8oVByYDV346l7k3JgVUlyBIY_0BWrG1EIetq85GsADZ1IQDEJ_I55yMANDWrVuR5S3cH7F7yAWeaT2jGpAPtcTxES11MNMcw--E3ffDY62H4-_q293GafQhIXdJm9HFYiC5Og9Xphc46TEhPKXYB-3xNrpwOGW_e55o8_fzxuPtV7O9v73bbfWGEgLHgHJA7xpmRXWu1ZSBli3WlhYTGCt1WrLKda52oudTQANeN62zFsXOi1VKsyddL77L4z4R5VL3PBkPQA8YpKyblppasFecou0RNijkndOqUfL-crhios0t1VItLdXapQKrF5cJ8vzC4_DB7TCobj4NB69OiTNno_0P_Ax6yfmk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1559651835</pqid></control><display><type>article</type><title>A Chebyshev spectral method for solving Riemann–Liouville fractional boundary value problems</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Graef, John R. ; Kong, Lingju ; Wang, Min</creator><creatorcontrib>Graef, John R. ; Kong, Lingju ; Wang, Min</creatorcontrib><description>The authors derive a series of explicit formulas to approximate the Riemann–Liouville derivative and integral of arbitrary order by shifted Chebyshev polynomials. This is then applied to solve boundary value problems involving Riemann–Liouville derivatives.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2014.05.012</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Approximation ; Boundary value problems ; Chebyshev approximation ; Chebyshev polynomials ; Collocation method ; Derivatives ; Integrals ; Mathematical analysis ; Polynomials ; Riemann–Liouville fractional calculus ; Spectral methods</subject><ispartof>Applied mathematics and computation, 2014-08, Vol.241, p.140-150</ispartof><rights>2014 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-220e2f121c5b8dad10558e64a3507d3a8414dbf8f3625a0702a7fbd42ebf38a53</citedby><cites>FETCH-LOGICAL-c330t-220e2f121c5b8dad10558e64a3507d3a8414dbf8f3625a0702a7fbd42ebf38a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0096300314006687$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Graef, John R.</creatorcontrib><creatorcontrib>Kong, Lingju</creatorcontrib><creatorcontrib>Wang, Min</creatorcontrib><title>A Chebyshev spectral method for solving Riemann–Liouville fractional boundary value problems</title><title>Applied mathematics and computation</title><description>The authors derive a series of explicit formulas to approximate the Riemann–Liouville derivative and integral of arbitrary order by shifted Chebyshev polynomials. This is then applied to solve boundary value problems involving Riemann–Liouville derivatives.</description><subject>Approximation</subject><subject>Boundary value problems</subject><subject>Chebyshev approximation</subject><subject>Chebyshev polynomials</subject><subject>Collocation method</subject><subject>Derivatives</subject><subject>Integrals</subject><subject>Mathematical analysis</subject><subject>Polynomials</subject><subject>Riemann–Liouville fractional calculus</subject><subject>Spectral methods</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kLFu2zAQhomiAeo6eYBuHLtIPZKiJKOTYbRpAAMBgmQNQZHHmgYluqQkIFveIW_YJ6kMZ-50y__9d_cR8oVByYDV346l7k3JgVUlyBIY_0BWrG1EIetq85GsADZ1IQDEJ_I55yMANDWrVuR5S3cH7F7yAWeaT2jGpAPtcTxES11MNMcw--E3ffDY62H4-_q293GafQhIXdJm9HFYiC5Og9Xphc46TEhPKXYB-3xNrpwOGW_e55o8_fzxuPtV7O9v73bbfWGEgLHgHJA7xpmRXWu1ZSBli3WlhYTGCt1WrLKda52oudTQANeN62zFsXOi1VKsyddL77L4z4R5VL3PBkPQA8YpKyblppasFecou0RNijkndOqUfL-crhios0t1VItLdXapQKrF5cJ8vzC4_DB7TCobj4NB69OiTNno_0P_Ax6yfmk</recordid><startdate>20140815</startdate><enddate>20140815</enddate><creator>Graef, John R.</creator><creator>Kong, Lingju</creator><creator>Wang, Min</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140815</creationdate><title>A Chebyshev spectral method for solving Riemann–Liouville fractional boundary value problems</title><author>Graef, John R. ; Kong, Lingju ; Wang, Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-220e2f121c5b8dad10558e64a3507d3a8414dbf8f3625a0702a7fbd42ebf38a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Approximation</topic><topic>Boundary value problems</topic><topic>Chebyshev approximation</topic><topic>Chebyshev polynomials</topic><topic>Collocation method</topic><topic>Derivatives</topic><topic>Integrals</topic><topic>Mathematical analysis</topic><topic>Polynomials</topic><topic>Riemann–Liouville fractional calculus</topic><topic>Spectral methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Graef, John R.</creatorcontrib><creatorcontrib>Kong, Lingju</creatorcontrib><creatorcontrib>Wang, Min</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Graef, John R.</au><au>Kong, Lingju</au><au>Wang, Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Chebyshev spectral method for solving Riemann–Liouville fractional boundary value problems</atitle><jtitle>Applied mathematics and computation</jtitle><date>2014-08-15</date><risdate>2014</risdate><volume>241</volume><spage>140</spage><epage>150</epage><pages>140-150</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><abstract>The authors derive a series of explicit formulas to approximate the Riemann–Liouville derivative and integral of arbitrary order by shifted Chebyshev polynomials. This is then applied to solve boundary value problems involving Riemann–Liouville derivatives.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2014.05.012</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0096-3003
ispartof Applied mathematics and computation, 2014-08, Vol.241, p.140-150
issn 0096-3003
1873-5649
language eng
recordid cdi_proquest_miscellaneous_1559651835
source Elsevier ScienceDirect Journals Complete
subjects Approximation
Boundary value problems
Chebyshev approximation
Chebyshev polynomials
Collocation method
Derivatives
Integrals
Mathematical analysis
Polynomials
Riemann–Liouville fractional calculus
Spectral methods
title A Chebyshev spectral method for solving Riemann–Liouville fractional boundary value problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T21%3A18%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Chebyshev%20spectral%20method%20for%20solving%20Riemann%E2%80%93Liouville%20fractional%20boundary%20value%20problems&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Graef,%20John%20R.&rft.date=2014-08-15&rft.volume=241&rft.spage=140&rft.epage=150&rft.pages=140-150&rft.issn=0096-3003&rft.eissn=1873-5649&rft_id=info:doi/10.1016/j.amc.2014.05.012&rft_dat=%3Cproquest_cross%3E1559651835%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1559651835&rft_id=info:pmid/&rft_els_id=S0096300314006687&rfr_iscdi=true