A Chebyshev spectral method for solving Riemann–Liouville fractional boundary value problems
The authors derive a series of explicit formulas to approximate the Riemann–Liouville derivative and integral of arbitrary order by shifted Chebyshev polynomials. This is then applied to solve boundary value problems involving Riemann–Liouville derivatives.
Gespeichert in:
Veröffentlicht in: | Applied mathematics and computation 2014-08, Vol.241, p.140-150 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The authors derive a series of explicit formulas to approximate the Riemann–Liouville derivative and integral of arbitrary order by shifted Chebyshev polynomials. This is then applied to solve boundary value problems involving Riemann–Liouville derivatives. |
---|---|
ISSN: | 0096-3003 1873-5649 |
DOI: | 10.1016/j.amc.2014.05.012 |