Maximum likelihood covariance matrix estimation for complex elliptically symmetric distributions under mismatched conditions

This paper deals with the maximum likelihood (ML) estimation of scatter matrix of complex elliptically symmetric (CES) distributed data when the hypothesized and the true model belong to the CES family but are different, then under mismatched model condition. Firstly, we derive the Huber limit, or s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Signal processing 2014-11, Vol.104, p.381-386
Hauptverfasser: Greco, Maria, Fortunati, Stefano, Gini, Fulvio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper deals with the maximum likelihood (ML) estimation of scatter matrix of complex elliptically symmetric (CES) distributed data when the hypothesized and the true model belong to the CES family but are different, then under mismatched model condition. Firstly, we derive the Huber limit, or sandwich matrix expression, for a generic CES model. Then, we compare the performance of mismatched and matched ML estimators to the Huber limit and to the Cramér–Rao lower bound (CRLB) in some relevant study cases. •This paper deals with the ML estimation of scatter matrix of CES distributions.•We consider mismatched model conditions, that is, hypothesized and the true model are different.•The novelty of the paper is the derivation in closed form of the Huber limit for CES distributions.•The paper is completed with the comparison of mismatched ML, matched ML estimators and CRLBs.
ISSN:0165-1684
1872-7557
DOI:10.1016/j.sigpro.2014.04.002