Improved oral absorption and chemical stability of everolimus via preparation of solid dispersion using solvent wetting technique
[Display omitted] The aim of this study was to improve the physicochemical properties and oral absorption of poorly water-soluble everolimus via preparation of a solid dispersion (SD) system using a solvent wetting (SW) technique. The physicochemical properties, drug release profile, and bioavailabi...
Gespeichert in:
Veröffentlicht in: | International journal of pharmaceutics 2014-10, Vol.473 (1-2), p.187-193 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
The aim of this study was to improve the physicochemical properties and oral absorption of poorly water-soluble everolimus via preparation of a solid dispersion (SD) system using a solvent wetting (SW) technique. The physicochemical properties, drug release profile, and bioavailability of SD prepared by SW process were also compared to SD prepared by the conventional co-precipitation method. Solid state characterizations using scanning electron microscopy, particle size analysis and X-ray powder diffraction indicated that drug homogeneously dispersed and existed in an amorphous state within the intact polymeric carrier. Whereas, a film-like mass was obtained by a co-precipitation method and further pulverization step was needed for tabletization. The drug release from the SD tablet prepared by SW process at a ratio of drug to hydroxypropyl methylcellulose of 1:15 was markedly higher than the drug alone and equivalent to the marketed product (Afinitor®, Novartis Pharmaceuticals), a SD tablet prepared by co-precipitation method, archiving over 75% the drug release after 30min. At the accelerated (40°C/75% R.H.) and stress (80°C) stability tests, the novel formula was more stable than drug powder and provided comparable drug stability with the commercially available product, which contains a potentially risky antioxidant, butylated hydroxyl toluene. The pharmacokinetic parameters after single oral administration in beagles showed no significant difference (P>0.01) between the novel SD-based tablet and the marketed product. The results of this study, therefore, suggest that the novel SD system prepared by the solvent wetting process may be a promising approach for improving the physicochemical stability and oral absorption of the sirolimus derivatives. |
---|---|
ISSN: | 0378-5173 1873-3476 |
DOI: | 10.1016/j.ijpharm.2014.06.006 |