Automatic keyphrase annotation of scientific documents using Wikipedia and genetic algorithms
Topical annotation of documents with keyphrases is a proven method for revealing the subject of scientific and research documents to both human readers and information retrieval systems. This article describes a machine learning-based keyphrase annotation method for scientific documents that utilize...
Gespeichert in:
Veröffentlicht in: | Journal of information science 2013-06, Vol.39 (3), p.410-426 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Topical annotation of documents with keyphrases is a proven method for revealing the subject of scientific and research documents to both human readers and information retrieval systems. This article describes a machine learning-based keyphrase annotation method for scientific documents that utilizes Wikipedia as a thesaurus for candidate selection from documents’ content. We have devised a set of 20 statistical, positional and semantical features for candidate phrases to capture and reflect various properties of those candidates that have the highest keyphraseness probability. We first introduce a simple unsupervised method for ranking and filtering the most probable keyphrases, and then evolve it into a novel supervised method using genetic algorithms. We have evaluated the performance of both methods on a third-party dataset of research papers. Reported experimental results show that the performance of our proposed methods, measured in terms of consistency with human annotators, is on a par with that achieved by humans and outperforms rival supervised and unsupervised methods. |
---|---|
ISSN: | 0165-5515 1741-6485 |
DOI: | 10.1177/0165551512472138 |