Tunable Indirect to Direct Band Gap Transition of Monolayer Sc2CO2 by the Strain Effect
MXene has not yet been investigated in optical applications because it is a newly suggested two-dimensional material. In the present work, the first investigation of the prospects of MXene as a novel optical nanodevice was done by applying strain to monolayer Sc2CO2 using first-principles density-fu...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2014-08, Vol.6 (16), p.14724-14728 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | MXene has not yet been investigated in optical applications because it is a newly suggested two-dimensional material. In the present work, the first investigation of the prospects of MXene as a novel optical nanodevice was done by applying strain to monolayer Sc2CO2 using first-principles density-functional theory. This single-layer material experiences an indirect to direct band gap transition with variation of the band gap size at a relatively small critical strain of about 2%. The present work emphasizes that monolayer MXene can become a promising material for an optical nanodevice by modulating the band gap properties using strain engineering. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/am504233d |