Radiation-induced skin injury after complex endovascular procedures

Background Radiation-induced skin injury is a serious potential complication of fluoroscopically guided interventions. Transient erythema occurs at doses of 2 to 5 Gy, whereas permanent epilation, ulceration, and desquamation are expected at doses above this level. Complex endovascular procedures (C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of vascular surgery 2014-09, Vol.60 (3), p.742-748
Hauptverfasser: Kirkwood, Melissa L., MD, Arbique, Gary M., PhD, Guild, Jeffrey B., PhD, Timaran, Carlos, MD, Valentine, R. James, MD, Anderson, Jon A., PhD
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background Radiation-induced skin injury is a serious potential complication of fluoroscopically guided interventions. Transient erythema occurs at doses of 2 to 5 Gy, whereas permanent epilation, ulceration, and desquamation are expected at doses above this level. Complex endovascular procedures (CEPs), such as fenestrated endovascular aortic aneurysm repair (FEVAR), are associated with high radiation doses, yet the prevalence of radiation-induced skin injury is unknown. We hypothesized that skin injury after these exposures is likely to be underrecognized and underreported. This study examined the frequency and severity of deterministic effects and evaluated patient characteristics that might predispose to radiation injury in CEP. Methods CEP was defined as a procedure with a radiation dose ≥5 Gy (National Council on Radiation Protection and Measurements threshold for substantial radiation dose level [SRDL]). Radiation dose and operating factors were recorded for all CEPs performed in a hybrid room during a 30-month period. Patient medical records were retrospectively reviewed for evidence of skin injury. Patients were seen in follow-up daily until discharge and then at weeks 2 and 6, months 3 and 6, and 1 year. Phone interviews were conducted to determine the presence of any skin-related complaints. Peak skin dose (PSD) distributions were calculated for FEVARs with custom software employing input data from fluoroscopic machine logs. These calculations were validated against Gafchromic film (Ashland Inc, Covington, Ky) measurements. Dose was summed for the subset of patients with multiple procedures within 6 months of the SRDL event, consistent with Joint Commission recommendations. Results Sixty-one CEPs reached a reference air kerma (RAK) of 5 Gy (50 FEVARs, six embolizations, one thoracic endovascular aortic repair, one endovascular aneurysm repair, one carotid intervention, and two visceral interventions). The patient cohort was 79% male and had a mean body mass index of 31. The average RAK was 8 ± 2 Gy (5.0-15.9 Gy). Sixteen patients had multiple CEPs within 6 months of the SRDL event, with a mean cumulative RAK of 12 ± 3 Gy (7.0-18.4 Gy). The mean FEVAR PSD was 6.6 ± 3.6 Gy (3.7-17.8 Gy), with a mean PSD/RAK ratio of 0.78. Gafchromic film dose measurements were not statistically different from PSD estimations, with a constant of proportionality of 0.99. Three patients were lost to follow-up before their first postoperative visit. No radiation skin
ISSN:0741-5214
1097-6809
DOI:10.1016/j.jvs.2014.03.236