Anisotropy and Size Effects on the Optical Spectra of Polycyclic Aromatic Hydrocarbons

The electronic and optical properties of polycyclic aromatic hydrocarbons (PAHs) present a strong dependence on their size and geometry. We tackle this issue by analyzing the spectral features of two prototypical classes of PAHs, belonging to D 6h and D 2h symmetry point groups and related to corone...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2014-08, Vol.118 (33), p.6507-6513
Hauptverfasser: Cocchi, Caterina, Prezzi, Deborah, Ruini, Alice, Caldas, Marilia J, Molinari, Elisa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The electronic and optical properties of polycyclic aromatic hydrocarbons (PAHs) present a strong dependence on their size and geometry. We tackle this issue by analyzing the spectral features of two prototypical classes of PAHs, belonging to D 6h and D 2h symmetry point groups and related to coronene as multifunctional seed. While the size variation induces an overall red shift of the spectra and a redistribution of the oscillator strength between the main peaks, a lower molecular symmetry is responsible for the appearance of new optical features. Along with broken molecular orbital degeneracies, optical peaks split and dark states are activated in the low-energy part of the spectrum. Supported by a systematic analysis of the composition and the character of the optical transitions, our results contribute in shedding light to the mechanisms responsible for spectral modifications in the visible and near UV absorption bands of medium-size PAHs.
ISSN:1089-5639
1520-5215
DOI:10.1021/jp503054j