Humic Substances Enhance Growth and Respiration in the Basidiomycetes Trametes Maxima Under Carbon Limited Conditions
Humic substances (HS) represent the major reservoir of carbon (C) in ecosystems, and their turnover is crucial for understanding the global C cycle. Although basidiomycetes clearly have a role in HS degradation, much less is known about the effect of HS on fungal traits. We studied the alteration of...
Gespeichert in:
Veröffentlicht in: | Journal of chemical ecology 2014-06, Vol.40 (6), p.643-652 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Humic substances (HS) represent the major reservoir of carbon (C) in ecosystems, and their turnover is crucial for understanding the global C cycle. Although basidiomycetes clearly have a role in HS degradation, much less is known about the effect of HS on fungal traits. We studied the alteration of physiological, biochemical, and morphological characteristics of Trametes maxima in the presence of HS. Both complete medium and minimal (C-limited) medium mimicking natural environmental conditions were used. Adding HS led to increased biomass yield, but under C-limited conditions the effect was more apparent. This result indicated that HS were used as an additional substrate and agreed with data showing a greater penetration of tritium-labeled HS into the cell interior under C-limited conditions. Humic substances induced ultra-structural changes in fungal cells, especially under C limitation, including reducing the thicknesses of the hyphal sheath and cell wall. In the minimal medium, cellular respiration increased nearly three-fold under HS application, while the corresponding effect in complete medium was lower. In addition, in the presence of inhibitors, HS stimulated either the cytochrome or the alternative pathway of respiration, depending on presence or absence of glucose in the medium. Our results suggest that, under conditions mimicking the natural environment, HS may play three major roles: as a surplus substrate for fungal growth, as a factor positively affecting cell morphology, and as an activator of physiological respiration. |
---|---|
ISSN: | 0098-0331 1573-1561 |
DOI: | 10.1007/s10886-014-0445-x |