Resiliency of an Interior Ponderosa Pine Forest to Bark Beetle Infestations Following Fuel-Reduction and Forest-Restoration Treatments
Mechanical thinning and the application of prescribed fire are commonly used to restore fire-adapted forest ecosystems in the Western United States. During a 10-year period, we monitored the effects of fuel-reduction and forest-restoration treatments on levels of tree mortality in an interior ponder...
Gespeichert in:
Veröffentlicht in: | Forests 2014-01, Vol.5 (1), p.153-176 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mechanical thinning and the application of prescribed fire are commonly used to restore fire-adapted forest ecosystems in the Western United States. During a 10-year period, we monitored the effects of fuel-reduction and forest-restoration treatments on levels of tree mortality in an interior ponderosa pine, Pinus ponderosa Dougl. ex Laws., forest in California. Twelve experimental plots, ranging in size from 77-144 ha, were established to create two distinct forest structural types: mid-seral stage (low structural diversity; LoD) and late-seral stage (high structural diversity; HiD). Following harvesting, half of each plot was treated with prescribed fire (B). A total of 16,473 trees (8.7% of all trees) died during the 10-year period. Mortality was primarily attributed to bark beetles (Coleoptera: Curculionidae, Scolytinae) (10,655 trees), specifically fir engraver, Scolytus ventralis LeConte, mountain pine beetle, Dendroctonus ponderosae Hopkins, western pine beetle, D. brevicomis LeConte, pine engraver, Ips pini (Say), and, to a much lesser extent, Jeffrey pine beetle, D. jeffreyi Hopkins. Trees of all ages and size classes were killed, but mortality was concentrated in the smaller-diameter classes (19-29.2 and 29.3-39.3 cm at 1.37 m in height). Most mortality occurred three to five years following prescribed burns. Higher levels of bark beetle-caused tree mortality were observed on LoD + B (8.7%) than LoD (4.2%). The application of these and other results to the management of interior P. ponderosa forests are discussed, with an emphasis on the maintenance of large trees. |
---|---|
ISSN: | 1999-4907 1999-4907 |
DOI: | 10.3390/f5010153 |