Photoaffinity Labeling of Nicotinic Receptors: Diversity of Drug Binding Sites
For almost 30 years, photoaffinity labeling and protein microsequencing techniques have been providing novel insights about the structure of nicotinic acetylcholine receptors (nAChR) and the diversity of nAChR drug binding sites. Photoaffinity labeling allows direct identification of amino acid resi...
Gespeichert in:
Veröffentlicht in: | Journal of molecular neuroscience 2014-07, Vol.53 (3), p.480-486 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For almost 30 years, photoaffinity labeling and protein microsequencing techniques have been providing novel insights about the structure of nicotinic acetylcholine receptors (nAChR) and the diversity of nAChR drug binding sites. Photoaffinity labeling allows direct identification of amino acid residues contributing to a drug binding site without prior knowledge of the location of the binding site within the nAChR or the orientation of the ligand within the binding site. It also distinguishes amino acids that contribute to allosteric binding sites from those involved in allosteric modulation of gating. While photoaffinity labeling was used initially to identify amino acids contributing to the agonist binding sites and the ion channel, it has been used recently to identify binding sites for allosteric modulators at subunit interfaces in the extracellular and the transmembrane domains, and within a subunit's transmembrane helix bundle. In this article, we review the different types of photoaffinity probes that have been used and the various binding sites that have been identified within the structure of nAChR, with emphasis on our recent studies of allosteric modulator binding sites. |
---|---|
ISSN: | 0895-8696 1559-1166 |
DOI: | 10.1007/s12031-013-0150-1 |